Browsing by Subject "Adaptation"

Sort by: Order: Results:

Now showing items 1-20 of 21
  • Pearce-Higgins, J. W.; Antão, L. H.; Bates, R. E.; Bowgen, K. M.; Bradshaw, C. D.; Duffield, S. J.; Ffoulkes, C.; Franco, A. M.A.; Geschke, J.; Gregory, R. D.; Harley, M. J.; Hodgson, J. A.; Jenkins, R. L.M.; Kapos, V.; Maltby, K. M.; Watts, O.; Willis, S. G.; Morecroft, M. D. (2022)
    Impacts of climate change on natural and human systems will become increasingly severe as the magnitude of climate change increases. Climate change adaptation interventions to address current and projected impacts are thus paramount. Yet, evidence on their effectiveness remains limited, highlighting the need for appropriate ecological indicators to measure progress of climate change adaptation for the natural environment. We outline conceptual, analytical, and practical challenges in developing such indicators, before proposing a framework with three process-based and two results-based indicator types to track progress in adapting to climate change. We emphasize the importance of dynamic assessment and modification over time, as new adaptation targets are set and/or as intervention actions are monitored and evaluated. Our framework and proposed indicators are flexible and widely applicable across species, habitats, and monitoring programmes, and could be accommodated within existing national or international frameworks to enable the evaluation of both large-scale policy instruments and local management interventions. We conclude by suggesting further work required to develop these indicators fully, and hope this will stimulate the use of ecological indicators to evaluate the effectiveness of policy interventions for the adaptation of the natural environment across the globe.
  • Aula, Onerva (Helsingin yliopisto, 2022)
    This study aims to understand how cities adapt to environmentally induced hazards, like floods. Extreme floods are interesting firstly, because climate change is predicted to increase flooding in several places globally in the future, and secondly, because even a small risk could be realised in the right conditions. The methods are a case study of flood adaptation in Helsinki, qualitative content analysis, interviews, and a scenario. Land use planning is chosen as the context of the case study, because densification challenges flood preparedness. The material consists of the zoning plan of Helsinki, its flood risk management related appendixes and interviews with city experts. The qualitative content analysis aims to answer the first research question: How does land use planning consider extreme floods in Helsinki? The scenario, in turn, aims to answer the second research question: In what ways might an extreme flood challenge the current land use planning in Helsinki? The interviews are mainly used to support the other methods. The results lead to one main argument, for which I present several justifications. The argument is that the flood risk management and land use planning in Helsinki, the urban structure of which is densifying, do not sufficiently consider the risk related to extreme floods, even though climate change is increasing the likelihood of such. In the end, I present some policy recommendations to change this.
  • Dahms, Carolin; Kemppainen, Petri; Zanella, Linda N.; Zanella, Davor; Carosi, Antonella; Merilä, Juha; Momigliano, Paolo (2022)
    The three-spined stickleback (Gasterosteus aculeatus) has repeatedly and independently adapted to freshwater habitats from standing genetic variation (SGV) following colonization from the sea. However, in the Mediterranean Sea G. aculeatus is believed to have gone extinct, and thus the spread of locally adapted alleles between different freshwater populations via the sea since then has been highly unlikely. This is expected to limit parallel evolution, that is the extent to which phylogenetically related alleles can be shared among independently colonized freshwater populations. Using whole genome and 2b-RAD sequencing data, we compared levels of genetic differentiation and genetic parallelism of 15 Adriatic stickleback populations to 19 Pacific, Atlantic and Caspian populations, where gene flow between freshwater populations across extant marine populations is still possible. Our findings support previous studies suggesting that Adriatic populations are highly differentiated (average F-ST approximate to 0.45), of low genetic diversity and connectivity, and likely to stem from multiple independent colonizations during the Pleistocene. Linkage disequilibrium network analyses in combination with linear mixed models nevertheless revealed several parallel marine-freshwater differentiated genomic regions, although still not to the extent observed elsewhere in the world. We hypothesize that current levels of genetic parallelism in the Adriatic lineages are a relic of freshwater adaptation from SGV prior to the extinction of marine sticklebacks in the Mediterranean that has persisted despite substantial genetic drift experienced by the Adriatic stickleback isolates.
  • Räsänen, Aleksi; Juhola, Sirkku; Nygren, Anja; Käkönen, Mira; Kallio, Maarit; Monge Monge, Adrian; Kanninen, Markku (2016)
    We systematically reviewed current climate change literature in order to examine how multiple processes that affect human vulnerability have been studied. Of the 125 reviewed articles, 79 % were published after 2009. There are numerous concepts that point out to stressors other than climate change that were used in reviewed studies. These different concepts were used interchangeably, and they illustrate processes that act on different scales. Most widely used concepts included non-climatic (40 % of the articles), multiple stressors (38 %) and other factors (37 %). About 75 % of the studies either acknowledged or carefully analyzed the social and environmental context in which vulnerability is experienced. One-third of the studies recognized climate change-related stressors as the most important, one-third argued that stressors other than climate are more important, and the rest of the studies did not analyze the relative importance of the different processes. Interactions between different stressors were mentioned in 76 % and analyzed explicitly in 28 % of the articles. Our review shows that there are studies that analyze the social context of vulnerability within climate change-related literature and this literature is rapidly expanding. Reviewed studies point out that there are multiple interacting stressors, whose interlinkages need to be carefully analyzed and targeted by policies, which integrate adaptation to climate change and other stressors. In conclusion, we suggest that future studies should include analytical frameworks that reflect dissimilarities between different types of stressors, methodological triangulation to identify key stressors and analysis of interactions between multiple stressors across different scales.
  • Klein, Johannes; Käyhkö, Janina; Räsänen, Aleksi; Groundstroem, Fanny; Eilu, Pasi (2022)
    Climate change can affect the mining sector in various ways. Physical impacts can be a threat to mines and personnel, transport infrastructure and supply chains, while the low-carbon transition may entail transition risks stemming from e.g., the need to respond to mitigation and adaptation policies, as well as opportunities in the form of increased metal and mineral demand. However, there is little knowledge of how mining companies perceive, manage, and respond to risks related to climate change. To address this knowledge gap, we examined annual and sustainability reports from 2019 for active metal mines in Finland, Sweden, and Norway. Through a structuring qualitative content analysis, we analysed the mining companies’ self-reported experience of and expectations for climate change impacts and risks, as well as adaptation and management activities taken or planned. Our findings indicate that physical impacts of climate change are not perceived as a major risk. In contrast, mitigation activities and reactions to climate policies play an important role, at least for some of the companies. Hence, the mining sector would benefit from more stringent risk reporting regulations and distinctive guidelines, as well as more research on the direct and indirect climate change impacts.
  • Landreau, Armand; Juhola, Sirkku; Jurgilevich, Alexandra; Räsänen, Aleksi (2021)
    The assessments of future climate risks are common; however, usually, they focus on climate projections without considering social changes. We project heat risks for Finland to evaluate (1) what kind of differences there are in heat vulnerability projections with different scenarios and scales, and (2) how the use of socio-economic scenarios influences heat risk assessments. We project a vulnerability index with seven indicators downscaled to the postal code area scale for 2050. Three different scenario sets for vulnerability are tested: one with five global Shared Socioeconomic Pathways (SSPs) scenarios; the second with three European SSPs (EUSSPs) with data at the sub-national scale (NUTS2); and the last with the EUSSPs but aggregated data at the national scale. We construct projections of heat risk utilizing climatic heat hazard data for three different Representative Concentration Pathways (RCPs) and vulnerability and exposure data for five global SSPs up to 2100. In the vulnerability projections, each scenario in each dataset shows a decrease in vulnerability compared to current values, and the differences between the three scenario sets are small. There are evident differences both in the spatial patterns and in the temporal trends when comparing the risk projections with constant vulnerability to the projections with dynamic vulnerability. Heat hazard increases notably in RCP4.5 and RCP8.5, but a decrease of vulnerability especially in SSP1 and SSP5 alleviates risks. We show that projections of vulnerability have a considerable impact on future heat-related risk and emphasize that future risk assessments should include the combination of long-term climatic and socio-economic projections.
  • Autio, Antti; Johansson, Tino; Motaroki, Lilian; Minoia, Paola; Pellikka, Petri (2021)
    CONTEXT: Climate uncertainty challenges the livelihoods of smallholder farmers in sub-Saharan Africa. Awareness of climate-smart agricultural (CSA) practices and access to climate-smart technologies are key factors in determining the utilization of farm and land management practices that may simultaneously decrease greenhouse gas emissions, increase the adaptive capacity of farmers, and improve food security. OBJECTIVE: Understanding how biophysical and socio-economic constraints affect the adoption of CSA practices and technologies plays an essential role in policy and intervention planning. Our objective was to identify these constraints among smallholder farmers in Taita Taveta County of Southeast Kenya across varying agro-ecological zones. METHODS: We conducted a Climate-Smart Agriculture Rapid Appraisal that consisted of four mostly genderdisaggregated smallholder farmer workshops (102 participants), a household survey (65 participants), key informant interviews (16 informants), and four transect walks. RESULTS AND CONCLUSIONS: Our results indicate a dissonance in the perceived awareness of CSA practices and utilization of CSA technologies between state actors and farmers. State actors emphasize lack of awareness as a barrier to adoption, while farmers express knowledgeability regarding environmental change and climate-smart practices but are confined by limitations and restrictions posed by e.g. market mechanisms, land tenure issues,and lack of resources. These restrictions include e.g. uncertainty in product prices, lack of land ownership, scarcity of arable land, and simply lack of capital or willingness to invest. Farmers are further challenged by the emergence of new pests and human-wildlife conflicts. Our research findings are based on the contextual settings of Taita Taveta County, but the results indicate that adopting CSA practices and utilizing technologies, especially in sub-Saharan regions that are heavily based on subsistence agriculture with heterogenous agro-ecological zones, require localized and gender-responsive solutions in policy formation and planning of both agricultural extension services and development interventions that take into account the agency of the farmers. SIGNIFICANCE: This study contributes to existing climate change adaptation research by increasing our un- derstanding of how physical and socio-economic constraints can affect the adoption of new farm and land management practices, and how CSA-based intervention strategies could be restructured by local stakeholders to be more inclusive.
  • Sinclair-Waters, Marion; Nome, Torfinn; Wang, Jing; Lien, Sigbjorn; Kent, Matthew P.; Saegrov, Harald; Floro-Larsen, Bjorn; Bolstad, Geir H.; Primmer, Craig R.; Barson, Nicola J. (2022)
    Characterizing the role of different mutational effect sizes in the evolution of fitness-related traits has been a major goal in evolutionary biology for a century. Such characterization in a diversity of systems, both model and non-model, will help to understand the genetic processes underlying fitness variation. However, well-characterized genetic architectures of such traits in wild populations remain uncommon. In this study, we used haplotype-based and multi-SNP Bayesian association methods with sequencing data for 313 individuals from wild populations to test the mutational composition of known candidate regions for sea age at maturation in Atlantic salmon (Salmo salar). We detected an association at five loci out of 116 candidates previously identified in an aquaculture strain with maturation timing in wild Atlantic salmon. We found that at four of these five loci, variation explained by the locus was predominantly driven by a single SNP suggesting the genetic architecture of this trait includes multiple loci with simple, non-clustered alleles and a locus with potentially more complex alleles. This highlights the diversity of genetic architectures that can exist for fitness-related traits. Furthermore, this study provides a useful multi-SNP framework for future work using sequencing data to characterize genetic variation underlying phenotypes in wild populations.
  • Aphalo, Pedro J.; Sadras, Victor O. (2022)
    We review mechanisms for pre-emptive acclimation in plants and propose a conceptual model linking developmental and evolutionary ecology with the acquisition of information through sensing of cues and signals. The idea is that plants acquire much of the information in the environment not from individual cues and signals but instead from their joint multivariate properties such as correlations. If molecular signalling has evolved to extract such information, the joint multivariate properties of the environment must be encoded in the genome, epigenome, and phenome. We contend that multivariate complexity explains why extrapolating from experiments done in artificial contexts into natural or agricultural systems almost never works for characters under complex environmental regulation: biased relationships among the state variables in both time and space create a mismatch between the evolutionary history reflected in the genotype and the artificial growing conditions in which the phenotype is expressed. Our model can generate testable hypotheses bridging levels of organization. We describe the model and its theoretical bases, and discuss its implications. We illustrate the hypotheses that can be derived from the model in two cases of pre-emptive acclimation based on correlations in the environment: the shade avoidance response and acclimation to drought.
  • Chia, Eugene L.; Fobissie Blese, Kalame; Kanninen, Markku (2016)
    There is growing interest in designing and implementing climate change mitigation and adaptation (M + A) in synergy in the forest and land use sectors. However, there is limited knowledge on how the planning and promotion of synergies between M + A can be operationalized in the current efforts to mitigate climate change through forest carbon. This paper contributes to fill this knowledge gap by exploring ways of planning and promoting M + A synergy outcomes in forest carbon initiatives. It examines eight guidelines that are widely used in designing and implementing forest carbon initiatives. Four guiding principles with a number of criteria that are relevant for planning synergy outcomes in forest carbon activities are proposed. The guidelines for developing forest carbon initiatives need to demonstrate that (1) the health of forest ecosystems is maintained or enhanced; (2) the adaptive capacity of forest-dependent communities is ensured; (3) carbon and adaptation benefits are monitored and verified; and (4) adaptation outcomes are anticipated and planned in forest carbon initiatives. The forest carbon project development guidelines can encourage the integration of adaptation in forest carbon initiatives. However, their current efforts guiding projects and programs to deliver biodiversity and environmental benefits, ecosystem services, and socioeconomic benefits are not considered explicitly as efforts towards enhancing adaptation. An approach for incentivizing and motivating project developers, guideline setters, and offset buyers is imperative in order to enable existing guidelines to make clear contributions to adaptation goals. We highlight and discuss potential ways of incentivizing and motivating the explicit planning and promotion of adaptation outcomes in forest carbon initiatives.
  • Pylkkonen, Janne; Ukkonen, Antti; Kilpikoski, Juho; Tamminen, Samu; Heikinheimo, Hannes (ISCA, 2021)
    Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH
    Adaption of end-to-end speech recognition systems to new tasks is known to be challenging. A number of solutions have been proposed which apply external language models with various fusion methods, possibly with a combination of two-pass decoding. Also TTS systems have been used to generate adaptation data for the end-to-end models. In this paper we show that RNN-transducer models can be effectively adapted to new domains using only small amounts of textual data. By taking advantage of model's inherent structure, where the prediction network is interpreted as a language model, we can apply fast adaptation to the model. Adapting the model avoids the need for complicated decoding time fusions and external language models. Using appropriate regularization, the prediction network can be adapted to new domains while still retaining good generalization capabilities. We show with multiple ASR evaluation tasks how this method can provide relative gains of 10-45% in target task WER. We also share insights how RNN-transducer prediction network performs as a language model.
  • Dubois, Adelaide; Galan, Maxime; Cosson, Jean-Francois; Gauffre, Bertrand; Henttonen, Heikki; Niemimaa, Jukka; Razzauti, Maria; Voutilainen, Liina; Vitalis, Renaud; Guivier, Emmanuel; Charbonnel, Nathalie (2017)
    Understanding howhost dynamics, including variations of population size and dispersal, may affect the epidemiology of infectious diseases through ecological and evolutionary processes is an active research area. Here we focus on a bank vole (Myodes glareolus) metapopulation surveyed in Finland between 2005 and 2009. Bank vole is the reservoir of Puumala hantavirus (PUUV), the agent of nephropathia epidemica (NE, a mild form of hemorrhagic fever with renal symptom) in humans. M. glareolus populations experience multiannual density fluctuations that may influence the level of genetic diversity maintained in bank voles, PUUV prevalence and NE occurrence. We examine bank vole metapopulation genetics at presumably neutral markers and immunerelated genes involved in susceptibility to PUUV (Tnf-promoter, Tlr4, Tlr7 and Mx2 gene) to investigate the links between population dynamics, microevolutionary processes and PUUV epidemiology. We show that genetic drift slightly and transiently affects neutral and adaptive genetic variability within the metapopulation. Gene flow seems to counterbalance its effects during the multiannual density fluctuations. The low abundance phase may therefore be too short to impact genetic variation in the host, and consequently viral genetic diversity. Environmental heterogeneity does not seem to affect vole gene flow, which might explain the absence of spatial structure previously detected in PUUV in this area. Besides, our results suggest the role of vole dispersal on PUUV circulation through sex-specific and density-dependent movements. We find little evidence of selection acting on immune-related genes within this metapopulation. Footprint of positive selection is detected at Tlr-4 gene in 2008 only. We observe marginally significant associations between Mx2 genotype and PUUV genogroups. These results show that neutral processes seem to be the main factors affecting the evolution of these immune-related genes at a contemporary scale, although the relative effects of neutral and adaptive forces could vary temporally with density fluctuations. Immune related gene polymorphism may in turn partly influence PUUV epidemiology in this metapopulation. (C) 2016 Published by Elsevier B.V.
  • Niskanen, Eija (2020)
    The article discusses the role of localization in anime, using Japanese animated Tv series of Moomin as an example.
  • Miraldo, Andreia; Wirta, Helena; Hanski, Ilkka (2011)
    Madagascar has a rich fauna of dung beetles (Scarabaeinae and Aphodiinae) with almost 300 species described to date. Like most other taxa in Madagascar, dung beetles exhibit an exceptionally high level of endemism (96% of the species). Here,we review the current knowledge of the origin and diversification of Malagasy dung beetles. Based on molecular phylogenies, the extant dung beetles originate from eight colonizations, of which four have given rise to extensive radiations. These radiations have occurred in wet forests, while the few extant species in the less successfu lradiations occur in open and semi-open habitats. We discuss the likely mechanisms of speciation and the ecological characteristics of the extant communities, emphasizing the role of adaptation along environmental gradients and allopatric speciation in generating the exceptionally high beta diversity in Malagasy dung beetles. Phylogeographic analyses of selected species reveal complex patterns with evidence for genetic introgression between old taxa. The introduction of cattle to Madagascar 1500 years ago created a new abundant resource, onto which a few species have shifted and thereby been able to greatly expand their geographical ranges.
  • Kynkäänniemi, Sanna-Mari; Kortet, Raine; Laaksonen, Sauli (2020)
    The deer ked (Lipoptena cervi) is a harmful ectoparasite that emerged in the reindeer herding area of Finland in 2006. To understand the current range and the intensity of infestations on its novel reindeer host, we studied deer ked pupae collected from reindeer and moose bedding sites and conducted a questionnaire survey among the managers of 18 reindeer herding cooperatives in the southern part of the reindeer herding area. Our study confirmed that the deer ked can survive and successfully reproduce on reindeer through winter and that flying deer keds had been observed in reindeer wintering areas during several autumns in twelve cooperatives. The pupae originating from reindeer were smaller and showed lower hatching rates than the pupae from moose. The present results indicate that the range of the deer ked infestations on reindeer in Finland expanded during the recent 5 years, now reaching 14 cooperatives and bordering an area south of approximately 66 degrees N 25 degrees E in the west and 65 degrees N 29 degrees E east.
  • Konijnendijk, Nellie; Shikano, Takahito; Daneels, Dorien; Volckaert, Filip A. M.; Raeymaekers, Joost A. M. (2015)
    Local adaptation is often obvious when gene flow is impeded, such as observed at large spatial scales and across strong ecological contrasts. However, it becomes less certain at small scales such as between adjacent populations or across weak ecological contrasts, when gene flow is strong. While studies on genomic adaptation tend to focus on the former, less is known about the genomic targets of natural selection in the latter situation. In this study, we investigate genomic adaptation in populations of the three-spined stickleback Gasterosteus aculeatus L. across a small-scale ecological transition with salinities ranging from brackish to fresh. Adaptation to salinity has been repeatedly demonstrated in this species. A genome scan based on 87 microsatellite markers revealed only few signatures of selection, likely owing to the constraints that homogenizing gene flow puts on adaptive divergence. However, the detected loci appear repeatedly as targets of selection in similar studies of genomic adaptation in the three-spined stickleback. We conclude that the signature of genomic selection in the face of strong gene flow is weak, yet detectable. We argue that the range of studies of genomic divergence should be extended to include more systems characterized by limited geographical and ecological isolation, which is often a realistic setting in nature.
  • Guzman-Lopez, Jessica; Hernandez-Pavon, Julio C.; Lioumis, Pantelis; Mäkelä, Jyrki P.; Silvanto, Juha (2022)
    Objective: The impact of transcranial magnetic stimulation (TMS) has been shown to depend on the initial brain state of the stimulated cortical region. This observation has led to the development of paradigms that aim to enhance the specificity of TMS effects by using visual/luminance adaptation to modulate brain state prior to the application of TMS. However, the neural basis of interactions between TMS and adaptation is unknown. Here, we examined these interactions by using electroencephalography (EEG) to measure the impact of TMS over the visual cortex after luminance adaptation. Methods: Single-pulses of neuronavigated TMS (nTMS) were applied at two different intensities over the left visual cortex after adaptation to either high or low luminance. We then analyzed the effects of adaptation on the global and local cortical excitability. Results: The analysis revealed a significant interaction between the TMS-evoked responses and the adaptation condition. In particular, when nTMS was applied with high intensity, the evoked responses were larger after adaptation to high than low luminance.Conclusion: This result provides the first neural evidence on the interaction between TMS with visual adaptation. Significance: TMS can activate neurons differentially as a function of their adaptation state.(c) 2021 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
  • Donner, K. (Elsevier, 1987)
    The sensitivity and intensity-response [R (log I)] functions of the receptive field center were determined by extracellular recording from frog retinal ganglion cells. The object was to study the steady-state adapting effects of peripheral background patterns: steady annuli and spinning “windmills” of light. Steady annular backgrounds could not be shown to directly effect any change of center responsiveness, only an enhancement of late response components attributable to depression of surround sensitivity. Movement of a windmill pattern shifted R(log I) functions to higher log intensities and decreased the maximal number of spikes in the response, but did not depress the saturation level of the impulse frequency. Its action thus resembled direct light-adaptation of the center.
  • Singh, Pooja; Ahi, Ehsan Pashay (2022)
    Although alternative splicing is a ubiquitous co-transcriptional gene regulatory mechanism in plants, animals and fungi, its contribution to evolutionary transitions is understudied. Alternative splicing enables different mRNA isoforms to be generated from the same gene, expanding transcriptomic and thus proteomic diversity. While the role of gene expression variation in adaptive evolution is widely accepted, biologists still debate the functional impact of alternative isoforms on phenotype. In light of recent empirical research linking splice variation to ecological adaptations, we propose that alternative splicing is an important substrate for adaptive evolution and speciation, particularly at short timescales. In this article we synthesise what is known about the role of alternative splicing in adaptive evolution. We discuss the contribution of standing splice variation to phenotypic plasticity and how hybridisation can produce novel splice forms. Going forwards, we propose that alternative splicing be included as a standard analysis alongside gene expression analysis so we can better understand of how alternative splicing contributes to adaptive divergence at the micro- and macroevolutionary levels.
  • Lecaudey, Laurene Alicia; Singh, Pooja; Sturmbauer, Christian; Duenser, Anna; Gessl, Wolfgang; Ahi, Ehsan Pashay (2021)
    BackgroundTeleosts display a spectacular diversity of craniofacial adaptations that often mediates ecological specializations. A considerable amount of research has revealed molecular players underlying skeletal craniofacial morphologies, but less is known about soft craniofacial phenotypes. Here we focus on an example of lip hypertrophy in the benthivorous Lake Tangnayika cichlid, Gnathochromis permaxillaris, considered to be a morphological adaptation to extract invertebrates out of the uppermost layer of mud bottom. We investigate the molecular and regulatory basis of lip hypertrophy in G. permaxillaris using a comparative transcriptomic approach.ResultsWe identified a gene regulatory network involved in tissue overgrowth and cellular hypertrophy, potentially associated with the formation of a locally restricted hypertrophic lip in a teleost fish species. Of particular interest were the increased expression level of apoda and fhl2, as well as reduced expression of cyp1a, gimap8, lama5 and rasal3, in the hypertrophic lip region which have been implicated in lip formation in other vertebrates. Among the predicted upstream transcription factors, we found reduced expression of foxp1 in the hypertrophic lip region, which is known to act as repressor of cell growth and proliferation, and its function has been associated with hypertrophy of upper lip in human.ConclusionOur results provide a genetic foundation for future studies of molecular players shaping soft and exaggerated, but locally restricted, craniofacial morphological changes in fish and perhaps across vertebrates. In the future, we advocate integrating gene regulatory networks of various craniofacial phenotypes to understand how they collectively govern trophic and behavioural adaptations.