Browsing by Subject "Amino acid"

Sort by: Order: Results:

Now showing items 1-4 of 4
  • Welsh, Paul; Rankin, Naomi; Li, Qiang; Mark, Patrick B.; Würtz, Peter; Ala-Korpela, Mika; Marre, Michel; Poulter, Neil; Hamet, Pavel; Chalmers, John; Woodward, Mark; Sattar, Naveed (2018)
    Aims/hypotheses We aimed to quantify the association of individual circulating amino acids with macrovascular disease, microvascular disease and all-cause mortality in individuals with type 2 diabetes. Methods We performed a case-cohort study (N = 3587), including 655 macrovascular events, 342 microvascular events (new or worsening nephropathy or retinopathy) and 632 all-cause mortality events during follow-up, in a secondary analysis of the Action in Diabetes and Vascular Disease: Preterax and Diamicron Modified Release Controlled Evaluation (ADVANCE) study. For this study, phenylalanine, isoleucine, glutamine, leucine, alanine, tyrosine, histidine and valine were measured in stored plasma samples by proton NMR metabolomics. Hazard ratios were modelled per SD increase in each amino acid. Results In models investigating associations and potential mechanisms, after adjusting for age, sex and randomised treatment, phenylalanine was positively, and histidine inversely, associated with macrovascular disease risk. These associations were attenuated to the null on further adjustment for extended classical risk factors (including eGFR and urinary albumin/creatinine ratio). After adjustment for extended classical risk factors, higher tyrosine and alanine levels were associated with decreased risk of microvascular disease (HR 0.78; 95% CI 0.67, 0.91 and HR 0.86; 95% CI 0.76, 0.98, respectively). Higher leucine (HR 0.79; 95% CI 0.69, 0.90), histidine (HR 0.89; 95% CI 0.81, 0.99) and valine (HR 0.79; 95% CI 0.70, 0.88) levels were associated with lower risk of mortality. Investigating the predictive ability of amino acids, addition of all amino acids to a risk score modestly improved classification of participants for macrovascular (continuous net reclassification index [NRI] +35.5%, p <0.001) and microvascular events (continuous NRI +14.4%, p = 0.012). Conclusions/interpretation We report distinct associations between circulating amino acids and risk of different major complications of diabetes. Low tyrosine appears to be a marker of microvascular risk in individuals with type 2 diabetes independently of fundamental markers of kidney function.
  • Ylinen, Vappu; Pylkko, Paivi; Peura, Jussi; Valaja, Jarmo (2020)
    To formulate low-protein diets for blue foxes with sufficient amounts of amino acids (AA), AA digestibility and AA requirements of the animals are crucial information. Therefore, a digestibility and nitrogen (N) balance trial was conducted with 20 blue foxes to determine the macronutrient and AA digestibility and N utilisation in low-protein diets supplemented with DL-methionine (Met) and L-histidine (His). In addition, plasma urea and plasma AA were measured. The diets were designated as P24 (control), P20, P20M, P16M and P16MH and contained energy from digestible crude protein (DCP) at 24%, 20% or 16% of total dietary metabolisable energy (ME). The 20% protein level was fed with or without Met and the 16% protein level was fed with Met and with or without His. The apparent total-tract digestibility (ATTD) of crude protein linearly decreased with decreasing dietary protein level. The ATTD of dry matter, organic matter and crude carbohydrates increased when wheat starch was added as a replacement for protein. The apparent ileal digestibility (AID) and ATTD methods were compared to determine the AA digestibility. The decreasing dietary protein supply decreased the ATTD of most of the AA: threonine, tryptophan (Trp), valine, alanine (Ala), aspartic acid (Asp), glutamic acid, glycine (Gly), proline (Pro), serine (Ser) and total AA. The AID of the AA was constant between diets. Diverging AA showed higher or lower digestibility when determined in the AID or ATTD methods. Isoleucine, lysine, Met, Ala and tyrosine showed higher levels of AID. Arginine, His, cysteine (Cys), Trp, Asp, Gly, Pro and Ser showed higher levels of ATTD, which may reflect the net loss of these AA in the large intestine. Met and His supplementation improved the ATTD and AID of the AA in question, respectively, but did not affect the other variables examined. N retention did not differ between diets and renal N excretion decreased with decreasing protein level; thus N utilisation improved. It was concluded that the protein supply and AA composition in low-protein diets with supplemented Met were adequate for adult blue foxes, since the lower protein supply improved N utilisation and did not affect N retention. However, His supplementation failed to reach the designed level and therefore showed no clear results.
  • Ojarinta, Rami; Saarinen, Jukka; Strachan, Clare J.; Korhonen, Ossi; Laitinen, Riikka (2018)
    Co-amorphous mixtures have rarely been formulated as oral dosage forms, even though they have been shown to stabilize amorphous drugs in the solid state and enhance the dissolution properties of poorly soluble drugs. In the present study we formulated tablets consisting of either spray dried co-amorphous ibuprofen-arginine or indomethacin-arginine, mannitol or xylitol and polyvinylpyrrolidone K30 (PVP). Experimental design was used for the selection of tablet compositions, and the effect of tablet composition on tablet characteristics was modelled. Multimodal non-linear imaging, including coherent anti-Stokes Raman scattering (CARS) and sum frequency/second harmonic generation (SFG/SHG) microscopies, as well as scanning electron microscopy, X-ray diffractometry and Fourier-transform infrared spectroscopy were utilized to characterize the tablets. The tablets possessed sufficient strength, but modelling produced no clear evidence about the compaction characteristics of co-amorphous salts. However, co-amorphous drug-arginine mixtures resulted in enhanced dissolution behaviour, and the PVP in the tableting mixture stabilized the supersaturation. The co-amorphous mixtures were physically stable during compaction, but the excipient selection affected the long term stability of the ibuprofen-arginine mixture. CARS and SFG/SHG proved feasible techniques in imaging the component distribution on the tablet surfaces, but possibly due to the limited imaging area, recrystallization detected with xray diffraction was not detected.
  • Jokinen, Kari; Salovaara, Anna-Kaisa Johanna; Wasonga, Daniel; Edelmann, Minnamari; Simpura, Ilkka; Mäkelä, Pirjo (2022)
    Leafy vegetables like lettuce (Lactuca sativa L.) naturally have high nitrate content and the European Commission has set maximum level for nitrate in lettuce. Glycinebetaine is an organic osmolyte alleviating plant stress, but its role in leaf nitrate accumulation remains unknown. The uptake of glycinebetaine by lettuce roots, and its potential to regulate lettuce nitrate content and improve plant quality were investigated. Two hydroponic lettuce experiments were conducted with different glycinebetaine application rates (Exp1 : 0, 1, 7.5, and 15 mM; Exp2: 0, 1 + 1 + 1, 1 + 10, and 4 mM). Plants were analyzed at varying time points. Root application resulted in glycinebetaine uptake and translocation to the leaves. Glycinebetaine concentrations > 7.5 mM reduced leaf nitrate up to 40% and increased leaf dry matter content. Glycinebetaine showed a positive effect on leaf mineral and amino acid composition. Thus, glycinebetaine could be a novel strategy to reduce the nitrate content in hydroponic lettuce.