Browsing by Subject "Archaea"

Sort by: Order: Results:

Now showing items 1-7 of 7
  • Pehkonen, Kati (Helsingfors universitet, 2013)
    Fungi play a crucial role in the ecosystem by recycling nutrients and forming mycorrhizal roots with plants. Many of the decomposer and mycorrhizal fungi are Bacidiomycetes. In the sexual reproduction stage, Bacidiomycetes produce fruiting bodies which enable them to produce and disseminate spores allowing fungi to spread to new growing sites. Fruiting bodies have been discovered to contain bacteria which may have a role in differentiation and maintenance of the fruiting body. They might also protect fruiting bodies against animals and diseases, and influence the nutritional value of the fruiting body. There is little knowledge about the amount of bacteria in the fruiting bodies. All previous research has been carried out entirely by cultivation-based methods and it shows that different fungal species contain very different amounts of bacteria. Some fruiting bodies have been shown not to contain easily cultivatable bacteria. The occurrence of archaea in fruiting bodies has not been previously studied and investigation into their function in fungi has only recently begun. In the present work significant amounts of bacterial and archaeal 16S rRNA -gene copies were discovered in the fruiting bodies of three ectomycorrhizal and three decomposer fungi species. This is the first time fruiting bodies have been shown to contain archaea. The occurrence of bacteria and archaea and the abundance of their 16S rRNA -genes in the fruiting bodies were determined using PCR ja quantitative PCR methods. Suillus bovinus and Boletus pinophilus fruiting bodies contained significantly more archaeal than bacterial gene copies. Cantharellus cibarius and Lycoperdon perlatum contained more bacterial than archaeal 16S rRNA -gene copies. In two decomposer fungi fruiting bodies, Agaricus arvensis and Piptoporus betulinus, the abundance of bacterial and archaeal gene copy numbers were equal. Suillus bovinus fruiting bodies had the largest copy number of archaeal 16S rRNA -genes from all species investigated. According to the results obtained in this work, the occurrence of bacteria and archaea might be common in fruiting bodies. The presence of bacteria and archaea in significant amounts in fruiting bodies may indicate their necessity for the development and sustainability of the fruiting body and hence to the whole life cycle of fungi.
  • Lammel, Daniel R; Barth, Gabriel; Ovaskainen, Otso; Cruz, Leonardo M; Zanatta, Josileia A; Ryo, Masahiro; de Souza, Emanuel M; Pedrosa, Fábio O (BioMed Central, 2018)
    Abstract Background pH is frequently reported as the main driver for prokaryotic community structure in soils. However, pH changes are also linked to “spillover effects” on other chemical parameters (e.g., availability of Al, Fe, Mn, Zn, and Cu) and plant growth, but these indirect effects on the microbial communities are rarely investigated. Usually, pH also co-varies with some confounding factors, such as land use, soil management (e.g., tillage and chemical inputs), plant cover, and/or edapho-climatic conditions. So, a more comprehensive analysis of the direct and indirect effects of pH brings a better understanding of the mechanisms driving prokaryotic (archaeal and bacterial) community structures. Results We evaluated an agricultural soil pH gradient (from 4 to 6, the typical range for tropical farms), in a liming gradient with confounding factors minimized, investigating relationships between prokaryotic communities (16S rRNA) and physical–chemical parameters (indirect effects). Correlations, hierarchical modeling of species communities (HMSC), and random forest (RF) modeling indicated that both direct and indirect effects of the pH gradient affected the prokaryotic communities. Some OTUs were more affected by the pH changes (e.g., some Actinobacteria), while others were more affected by the indirect pH effects (e.g., some Proteobacteria). HMSC detected a phylogenetic signal related to the effects. Both HMSC and RF indicated that the main indirect effect was the pH changes on the availability of some elements (e.g., Al, Fe, and Cu), and secondarily, effects on plant growth and nutrient cycling also affected the OTUs. Additionally, we found that some of the OTUs that responded to pH also correlated with CO2, CH4, and N2O greenhouse gas fluxes. Conclusions Our results indicate that there are two distinct pH-related mechanisms driving prokaryotic community structures, the direct effect and “spillover effects” of pH (indirect effects). Moreover, the indirect effects are highly relevant for some OTUs and consequently for the community structure; therefore, it is a mechanism that should be further investigated in microbial ecology.
  • Lammel, Daniel R.; Barth, Gabriel; Ovaskainen, Otso; Cruz, Leonardo M.; Zanatta, Josileia A.; Ryo, Masahiro; de Souza, Emanuel M.; Pedrosa, Fabio O. (2018)
    Background: pH is frequently reported as the main driver for prokaryotic community structure in soils. However, pH changes are also linked to "spillover effects" on other chemical parameters (e.g., availability of Al, Fe, Mn, Zn, and Cu) and plant growth, but these indirect effects on the microbial communities are rarely investigated. Usually, pH also co-varies with some confounding factors, such as land use, soil management (e.g., tillage and chemical inputs), plant cover, and/or edapho-climatic conditions. So, a more comprehensive analysis of the direct and indirect effects of pH brings a better understanding of the mechanisms driving prokaryotic (archaeal and bacterial) community structures. Results: We evaluated an agricultural soil pH gradient (from 4 to 6, the typical range for tropical farms), in a liming gradient with confounding factors minimized, investigating relationships between prokaryotic communities (16S rRNA) and physical-chemical parameters (indirect effects). Correlations, hierarchical modeling of species communities (HMSC), and random forest (RF) modeling indicated that both direct and indirect effects of the pH gradient affected the prokaryotic communities. Some OTUs were more affected by the pH changes (e.g., some Actinobacteria), while others were more affected by the indirect pH effects (e.g., some Proteobacteria). HMSC detected a phylogenetic signal related to the effects. Both HMSC and RF indicated that the main indirect effect was the pH changes on the availability of some elements (e.g., Al, Fe, and Cu), and secondarily, effects on plant growth and nutrient cycling also affected the OTUs. Additionally, we found that some of the OTUs that responded to pH also correlated with CO2, CH4, and N2O greenhouse gas fluxes. Conclusions: Our results indicate that there are two distinct pH-related mechanisms driving prokaryotic community structures, the direct effect and "spillover effects" of pH (indirect effects). Moreover, the indirect effects are highly relevant for some OTUs and consequently for the community structure; therefore, it is a mechanism that should be further investigated in microbial ecology.
  • Ritari, Jarmo; Salojärvi, Jarkko; Lahti, Leo; de Vos, Willem M. (2015)
    Background: Current sequencing technology enables taxonomic profiling of microbial ecosystems at high resolution and depth by using the 16S rRNA gene as a phylogenetic marker. Taxonomic assignation of newly acquired data is based on sequence comparisons with comprehensive reference databases to find consensus taxonomy for representative sequences. Nevertheless, even with well-characterised ecosystems like the human intestinal microbiota it is challenging to assign genus and species level taxonomy to 16S rRNA amplicon reads. A part of the explanation may lie in the sheer size of the search space where competition from a multitude of highly similar sequences may not allow reliable assignation at low taxonomic levels. However, when studying a particular environment such as the human intestine, it can be argued that a reference database comprising only sequences that are native to the environment would be sufficient, effectively reducing the search space. Results: We constructed a 16S rRNA gene database based on high-quality sequences specific for human intestinal microbiota, resulting in curated data set consisting of 2473 unique prokaryotic species-like groups and their taxonomic lineages, and compared its performance against the Greengenes and Silva databases. The results showed that regardless of used assignment algorithm, our database improved taxonomic assignation of 16S rRNA sequencing data by enabling significantly higher species and genus level assignation rate while preserving taxonomic diversity and demanding less computational resources. Conclusion: The curated human intestinal 16S rRNA gene taxonomic database of about 2500 species-like groups described here provides a practical solution for significantly improved taxonomic assignment for phylogenetic studies of the human intestinal microbiota.
  • Lusa, Merja; Knuutinen, Jenna; Lindgren, Marcus; Virkanen, Juhani; Bomberg, Malin (2019)
    The bacterial, fungal and archaeal communities were characterized in 17 top soil organic and mineral layer samples and in top sediment samples of the Paukkajanvaara area, a former pilot-scale uranium mine, located in Eno, Eastern Finland. using amplicon sequencing and qPCR. Soil and sediment samples were in addition analyzed for (Ra-226), radium sulfate (SO42-), nitrate (NO3-) and phosphate (PO43-) concentrations. New bacterial strains, representing Pseudomonas spp., were isolated from the mine and reference area and used in laboratory experiments on uptake and leaching of radium (Ra). The effect of these strains on the sulfate leaching from the soil samples was also tested in vitro. Between 6 x 10(6) and 5 x 10(8) copies g(-1) DW (dry weight) of bacterial 16S rRNA genes, 5 x 10(5)-1 x 10(8) copies g(-1) DW archaeal 16S rRNA genes and 1 x 10(5)-1 x 10(8) copies g(-1) DW fungal 5.8S rRNA genes were detected in the samples. A total of 814. 54 and 167 bacterial, archaeal and fungal genera. respectively, were identified. Proteobacteria, Euryarchaeota and Mortiriella were the dominant bacterial, archaeal and fungal phyla, respectively. All tested Pseudomonas spp. strains isolates from Paukkajanvaara removed Ra from the solution, but the amount of removed Ra depended on incubation conditions (temperature, time and nutrient broth). The highest removal of Ra (5320 L/kg DW) was observed by the Pseudomonas sp. strain T5-6-I at 37 degrees C. All Pseudomonas spp. strains decreased the release of Ra from soil with an average of 23% while simultaneously increasing the concentration of SO42- in the solution by 11%. As Pseudomonas spp. were frequent in both the sequence data and the cultures, these bacteria may play an important role in the immobilization of Ra in the Paukkajanvaara mine area. (C) 2019 The Authors. Published by Elsevier B.V.
  • El Omari, Kamel; Li, Sai; Kotecha, Abhay; Walter, Thomas S.; Bignon, Eduardo; Harlos, Karl; Somerharju, Pentti; Haas, Felix de; Clare, Daniel; Molin, Mika; Hurtado, Felipe; Li, Mengqiu; Grimes, Jonathan M.; Bamford, Dennis Henry; Tischler, Nicole D.; Huiskonen, Juha T.; Stuart, David I.; Roine, Elina (2019)
    Lipid membrane fusion is an essential function in many biological processes. Detailed mechanisms of membrane fusion and the protein structures involved have been mainly studied in eukaryotic systems, whereas very little is known about membrane fusion in prokaryotes. Haloarchaeal pleomorphic viruses (HRPVs) have a membrane envelope decorated with spikes that are presumed to be responsible for host attachment and membrane fusion. Here we determine atomic structures of the ectodomains of the 57-kDa spike protein VP5 from two related HRPVs revealing a previously unreported V-shaped fold. By Volta phase plate cryo-electron tomography we show that VP5 is monomeric on the viral surface, and we establish the orientation of the molecules with respect to the viral membrane. We also show that the viral membrane fuses with the host cytoplasmic membrane in a process mediated by VP5. This sheds light on protein structures involved in prokaryotic membrane fusion.