Browsing by Subject "Aspergillus niger"

Sort by: Order: Results:

Now showing items 1-11 of 11
  • Huang, Liyang (Helsingfors universitet, 2016)
    Plant biomass consists largely of polymeric compounds of which diverse polysaccharides are the main components. Ferulic acid is a ubiquitous phenolic phytochemical in plant cell wall and forms the linkage between plant cell wall polymers. Therefore it is a major aspect in the recalcitrance of cell wall against microbial attack. Ferulic acid esterases (FAEs) are hydrolytic enzymes which participate in plant biomass degradation by removing ferulic acid from the polysaccharides in order to weaken the integrity of the cell wall. By using phylogenetic gene prediction strategy, three putative FAE gene models have been detected from the genome of the ascomycete fungus Aspergillus niger. The codon optimized putative FAE encoding genes have been synthetized for heterologous production in Pichia pastoris GS115. In this work, these three FAEs of A. niger, i.e. FAE796, FAE807 and FAE809, were produced in P. pastoris and their biochemical properties were characterized. The properties included substrate profiling, thermostability, pH optimum and solvent tolerance of the recombinant FAEs. The three A. niger FAEs were successfully produced in P. pastoris resulting as approximately 57 kDa molecular mass proteins. Substrate profiling was performed by using a set of 11 synthetic FAE model substrates and substrates for tannase and lipase activity. FAE796 and FAE809 preferred methoxy substrates, and thus were likely to belong to type A class of FAEs. FAE807 had activity towards a wider range of substrates including methyl sinapate, methyl cinnamate, chlorogenic acid and para-nitrophenyl ferulate, suggesting it to belong to type C class of FAEs. In addition, FAE807 had tannase activity which is a novel property described among the FAEs studied so far. The optimal temperature for FAE796, FAE807 and FAE809 were +37 °C, +55 °C and +55 °C, respectively. FAE809 was the most thermostable enzyme, and retained half of its activity up to +60 °C for 60 min. The studied FAEs were most active at pH 4.0-5.0. FAE809 was relatively stable towards the studied solvents retaining 70%-91% of its activity after solvent treatment.
  • Peng, Mao; Khosravi, Claire; Lubbers, Ronnie J.M.; Kun, Roland S.; Aguilar Pontes, Maria Victoria; Battaglia, Evy; Chen, Cindy; Dalhuijsen, Sacha; Daly, Paul; Lipzen, Anna; Ng, Vivian; Yan, Juying; Wang, Mei; Visser, Jaap; Grigoriev, Igor V.; Mäkelä, Miia R.; de Vries, Ronald P. (2021)
    Carbon catabolite repression enables fungi to utilize the most favourable carbon source in the environment, and is mediated by a key regulator, CreA, in most fungi. CreA-mediated regulation has mainly been studied at high monosaccharide concentrations, an uncommon situation in most natural biotopes. In nature, many fungi rely on plant biomass as their major carbon source by producing enzymes to degrade plant cell wall polysaccharides into metabolizable sugars. To determine the role of CreA when fungi grow in more natural conditions and in particular with respect to degradation and conversion of plant cell walls, we compared transcriptomes of a creA deletion and reference strain of the ascomycete Aspergillus niger during growth on sugar beet pulp and wheat bran. Transcriptomics, extracellular sugar concentrations and growth profiling of A. niger on a variety of carbon sources, revealed that also under conditions with low concentrations of free monosaccharides, CreA has a major effect on gene expression in a strong time and substrate composition dependent manner. In addition, we compared the CreA regulon from five fungi during their growth on crude plant biomass or cellulose. It showed that CreA commonly regulated genes related to carbon metabolism, sugar transport and plant cell wall degrading enzymes across different species. We therefore conclude that CreA has a crucial role for fungi also in adapting to low sugar concentrations as occurring in their natural biotopes, which is supported by the presence of CreA orthologs in nearly all fungi.
  • Dilokpimol, Adiphol; Mäkelä, Miia R.; Mansouri, Sadegh; Belova, Olga; Waterstraat, Martin; Bunzel, Mirko; de Vries, Ronald P.; Hilden, Kristiina S. (2017)
    A feruloyl esterase (FAE) from Aspergillus niger N402, FaeC was heterologously produced in Pichia pastoris X-33 in a yield of 10 mg/L. FaeC was most active at pH 7.0 and 50 degrees C, and showed broad substrate specificity and catalyzed the hydrolysis of methyl 3,4-dimethoxycinnamate, ethyl ferulate, methyl ferulate, methyl p-coumarate, ethyl coumarate, methyl sinapate, and methyl caffeate. The enzyme released both ferulic acid and p-coumaric acid from wheat arabinoxylan and sugar beet pectin (up to 3 mg/g polysaccharide), and acted synergistically with a commercial xylanase increasing the release of ferulic acid up to six-fold. The expression of faeC increased over time in the presence of feruloylated polysaccharides. Cinnamic, syringic, caffeic, vanillic and ferulic acid induced the expression of faeC. Overall expression of faeC was very low in all tested conditions, compared to two other A. niger FAE encoding genes, faeA and faeB. Our data showed that the fae genes responded differently towards the feruloylated polysaccharides and tested monomeric phenolic compounds suggesting that the corresponding FAE isoenzymes may target different substrates in a complementary manner. This may increase the efficiency of the degradation of diverse plant biomass. (C) 2017 Elsevier B.V. All rights reserved.
  • Gruben, Birgit S.; Mäkelä, Miia R.; Kowalczyk, Joanna E.; Zhou, Miaomiao; Benoit-Gelber, Isabelle; De Vries, Ronald P. (2017)
    Background: The Aspergillus niger genome contains a large repertoire of genes encoding carbohydrate active enzymes (CAZymes) that are targeted to plant polysaccharide degradation enabling A. niger to grow on a wide range of plant biomass substrates. Which genes need to be activated in certain environmental conditions depends on the composition of the available substrate. Previous studies have demonstrated the involvement of a number of transcriptional regulators in plant biomass degradation and have identified sets of target genes for each regulator. In this study, a broad transcriptional analysis was performed of the A. niger genes encoding (putative) plant polysaccharide degrading enzymes. Microarray data focusing on the initial response of A. niger to the presence of plant biomass related carbon sources were analyzed of a wild-type strain N402 that was grown on a large range of carbon sources and of the regulatory mutant strains Delta xlnR, Delta araR, Delta amyR, Delta rhaR and Delta galX that were grown on their specific inducing compounds. Results: The cluster analysis of the expression data revealed several groups of co-regulated genes, which goes beyond the traditionally described co-regulated gene sets. Additional putative target genes of the selected regulators were identified, based on their expression profile. Notably, in several cases the expression profile puts questions on the function assignment of uncharacterized genes that was based on homology searches, highlighting the need for more extensive biochemical studies into the substrate specificity of enzymes encoded by these non-characterized genes. The data also revealed sets of genes that were upregulated in the regulatory mutants, suggesting interaction between the regulatory systems and a therefore even more complex overall regulatory network than has been reported so far. Conclusions: Expression profiling on a large number of substrates provides better insight in the complex regulatory systems that drive the conversion of plant biomass by fungi. In addition, the data provides additional evidence in favor of and against the similarity-based functions assigned to uncharacterized genes.
  • Gruben, Birgit S; Mäkelä, Miia R; Kowalczyk, Joanna E; Zhou, Miaomiao; Benoit-Gelber, Isabelle; De Vries, Ronald P (BioMed Central, 2017)
    Abstract Background The Aspergillus niger genome contains a large repertoire of genes encoding carbohydrate active enzymes (CAZymes) that are targeted to plant polysaccharide degradation enabling A. niger to grow on a wide range of plant biomass substrates. Which genes need to be activated in certain environmental conditions depends on the composition of the available substrate. Previous studies have demonstrated the involvement of a number of transcriptional regulators in plant biomass degradation and have identified sets of target genes for each regulator. In this study, a broad transcriptional analysis was performed of the A. niger genes encoding (putative) plant polysaccharide degrading enzymes. Microarray data focusing on the initial response of A. niger to the presence of plant biomass related carbon sources were analyzed of a wild-type strain N402 that was grown on a large range of carbon sources and of the regulatory mutant strains ΔxlnR, ΔaraR, ΔamyR, ΔrhaR and ΔgalX that were grown on their specific inducing compounds. Results The cluster analysis of the expression data revealed several groups of co-regulated genes, which goes beyond the traditionally described co-regulated gene sets. Additional putative target genes of the selected regulators were identified, based on their expression profile. Notably, in several cases the expression profile puts questions on the function assignment of uncharacterized genes that was based on homology searches, highlighting the need for more extensive biochemical studies into the substrate specificity of enzymes encoded by these non-characterized genes. The data also revealed sets of genes that were upregulated in the regulatory mutants, suggesting interaction between the regulatory systems and a therefore even more complex overall regulatory network than has been reported so far. Conclusions Expression profiling on a large number of substrates provides better insight in the complex regulatory systems that drive the conversion of plant biomass by fungi. In addition, the data provides additional evidence in favor of and against the similarity-based functions assigned to uncharacterized genes.
  • Routtu, Jarkko (University of Helsinki, 1999)
  • Peng, Mao; Aguilar-Pontes, Maria V.; de Vries, Ronald P.; Mäkelä, Miia R. (2018)
    Aspergillus niger is one of the most widely used fungi to study the conversion of the lignocellulosic feedstocks into fermentable sugars. Understanding the sugar uptake system of A. niger is essential to improve the efficiency of the process of fungal plant biomass degradation. In this study, we report a comprehensive characterization of the sugar transportome of A. niger by combining phylogenetic and comparative transcriptomic analyses. We identified 86 putative sugar transporter (ST) genes based on a conserved protein domain search. All these candidates were then classified into nine subfamilies and their functional motifs and possible sugar-specificity were annotated according to phylogenetic analysis and literature mining. Furthermore, we comparatively analyzed the ST gene expression on a large set of fungal growth conditions including mono-, di- and polysaccharides, and mutants of transcriptional regulators. This revealed that transporter genes from the same phylogenetic clade displayed very diverse expression patterns and were regulated by different transcriptional factors. The genome-wide study of STs of A. niger provides new insights into the mechanisms underlying an extremely flexible metabolism and high nutritional versatility of A. niger and will facilitate further biochemical characterization and industrial applications of these candidate STs.
  • Chroumpi, Tania; Peng, Mao; Markillie, Lye Meng; Mitchell, Hugh D.; Nicora, Carrie D.; Hutchinson, Chelsea M.; Paurus, Vanessa; Tolic, Nikola; Clendinen, Chaevien S.; Orr, Galya; Baker, Scott E.; Makela, Miia R.; de Vries, Ronald P. (2021)
    The filamentous ascomycete Aspergillus niger has received increasing interest as a cell factory, being able to efficiently degrade plant cell wall polysaccharides as well as having an extensive metabolism to convert the released monosaccharides into value added compounds. The pentoses D-xylose and L-arabinose are the most abundant monosaccharides in plant biomass after the hexose D-glucose, being major constituents of xylan, pectin and xyloglucan. In this study, the influence of selected pentose catabolic pathway (PCP) deletion strains on growth on plant biomass and re-routing of sugar catabolism was addressed to gain a better understanding of the flexibility of this fungus in using plant biomass-derived monomers. The transcriptome, metabolome and proteome response of three PCP mutant strains, Delta larA Delta xyrA Delta xyrB, Delta ladA Delta xdhA Delta sdhA and Delta xkiA, grown on wheat bran (WB) and sugar beet pulp (SBP), was evaluated. Our results showed that despite the absolute impact of these PCP mutations on pure pentose sugars, they are not as critical for growth of A. niger on more complex biomass substrates, such as WB and SBP. However, significant phenotypic variation was observed between the two biomass substrates, but also between the different PCP mutants. This shows that the high sugar heterogeneity of these substrates in combination with the high complexity and adaptability of the fungal sugar metabolism allow for activation of alternative strategies to support growth.
  • Garrigues, Sandra; Kun, Roland; Peng, Mao; Gruben, Birgit; Benoit Gelber, Isabelle; Mäkelä, Miia; de Vries, Ronald (2021)
    In nature, filamentous fungi are exposed to diverse nutritional sources and changes in substrate availability. Conversely, in submerged cultures, mycelia are continuously exposed to the existing substrates, which are depleted over time. Submerged cultures are the preferred choice for experimental setups in laboratory and industry and are often used for understanding the physiology of fungi. However, to what extent the cultivation method affects fungal physiology, with respect to utilization of natural substrates, has not been addressed in detail. Here, we compared the transcriptomic responses of Aspergillus niger grown in submerged culture and solid culture, both containing sugar beet pulp (SBP) as a carbon source. The results showed that expression of CAZy (Carbohydrate Active enZyme)-encoding and sugar catabolic genes in liquid SBP was time dependent. Moreover, additional components of SBP delayed the A. niger response to the degradation of pectin present in SBP. In addition, we demonstrated that liquid cultures induced wider transcriptome variability than solid cultures. Although there was a correlation regarding sugar metabolic gene expression patterns between liquid and solid cultures, it decreased in the case of CAZyme-encoding genes. In conclusion, the transcriptomic response of A. niger to SBP is influenced by the culturing method, limiting the value of liquid cultures for understanding the behavior of fungi in natural habitats. IMPORTANCE Understanding the interaction between filamentous fungi and their natural and biotechnological environments has been of great interest for the scientific community. Submerged cultures are preferred over solid cultures at a laboratory scale to study the natural response of fungi to different stimuli found in nature (e.g., carbon/nitrogen sources, pH). However, whether and to what extent submerged cultures introduce variation in the physiology of fungi during growth on plant biomass have not been studied in detail. In this study, we compared the transcriptomic responses of Aspergillus niger to growth on liquid and solid cultures containing sugar beet pulp (a by-product of the sugar industry) as a carbon source. We demonstrate that the transcriptomic response of A. niger was highly affected by the culture condition, since the transcriptomic response obtained in a liquid environment could not fully explain the behavior of the fungus in a solid environment. This could partially explain the differences often observed between the phenotypes on plates compared to liquid cultures.
  • Linares, Nancy Coconi; Di Falco, Marcos; Benoit-Gelber, Isabelle; Gruben, Birgit S.; Peng, Mao; Tsang, Adrian; Mäkelä, Miia R.; de Vries, Ronald P. (2019)
    Guar gum consists mainly of galactomannan and constitutes the endosperm of guar seeds that acts as a reserve polysaccharide for germination. Due to its molecular structure and physical properties, this biopolymer has been considered as one of the most important and widely used gums in industry. However, for many of these applications this (hemi-) cellulosic structure needs to be modified or (partially) depolymerized in order to customize and improve its physicochemical properties. In this study, transcriptome, exoproteome and enzyme activity analyses were employed to decipher the complete enzymatic arsenal for guar gum depolymerization by Aspergillus niger. This multi-omic analysis revealed a set of 46 genes encoding carbohydrate-active enzymes (CAZymes) responding to the presence of guar gum, including CAZymes not only with preferred activity towards galactomannan, but also towards (arabino-) xylan, cellulose, starch and pectin, likely due to trace components in guar gum. This demonstrates that the purity of substrates has a strong effect on the resulting enzyme mixture produced by A. niger and probably by other fungi as well, which has significant implications for the commercial production of fungal enzyme cocktails.
  • Meng, Jiali; Chroumpi, Tania; Mäkelä, Miia; de Vries, Ronald (2022)
    Xylitol is widely used in the food and pharmaceutical industries as a valuable commodity product. Biotechnological production of xylitol from lignocellulosic biomass by microorganisms is a promising alternative option to chemical synthesis or bioconversion from D-xylose. In this study, four metabolic mutants of Aspergillus niger were constructed and evaluated for xylitol accumulation from D-xylose and lignocellulosic biomass. All mutants had strongly increased xylitol production from pure D-xylose, beechwood xylan, wheat bran and cotton seed hulls compared to the reference strain, but not from several other feed stocks. The triple mutant Delta ladA Delta xdhA Delta sdhA showed the best performance in xylitol production from wheat bran and cotton seed hulls. This study demonstrated the large potential of A. niger for xylitol production directly from lignocellulosic biomass by metabolic engineering.