Browsing by Subject "Attention"

Sort by: Order: Results:

Now showing items 1-10 of 10
  • Schiavone, Nella; Virta, Maarit; Leppämäki, Sami; Launes, Jyrki; Vanninen, Ritva; Tuulio-Henriksson, Annamari; Immonen, Satu; Järvinen, Ilkka; Lehto, Eliisa; Michelsson, Katarina; Hokkanen, Laura (2019)
    We investigated ADHD symptoms and life outcomes in adulthood and their association with childhood ADHD and subthreshold symptoms in a prospectively followed cohort with perinatal risks. We identified participants with childhood ADHD (cADHD, n = 37), subthreshold symptoms defined as attention problems (cAP, n = 64), and no ADHD or cAP (Non-cAP, n = 217). We compared the groups and a control group with no perinatal risks (n = 64) on self-reported ADHD symptoms, executive dysfunction, and life outcomes in adulthood. At age 40, 21.6% of the cADHD, 6.3% of the cAP, 6.0% of the Non-cAP group, and 1.6% of the controls reached a screener cutoff for possible ADHD. The cADHD group had lower educational level, more ADHD symptoms and executive dysfunction, and higher rates of drug use than the other groups. Childhood ADHD associated with perinatal risks persists into midlife whereas childhood subthreshold ADHD symptoms in this cohort were not associated with negative outcomes in adulthood.
  • Salmi, Juha; Metwaly, Mostafa; Tohka, Jussi; Alho, Kimmo; Leppämäki, Sami; Tani, Pekka; Koski, Anniina; Vanderwal, Tamara; Laine, Matti (2020)
    Individuals with attention-deficit/hyperactivity disorder (ADHD) have difficulties navigating dynamic everyday situations that contain multiple sensory inputs that need to either be attended to or ignored. As conventional experimental tasks lack this type of everyday complexity, we administered a film-based multi-talker condition with auditory distractors in the background. ADHD-related aberrant brain responses to this naturalistic stimulus were identified using intersubject correlations (ISCs) in functional magnetic resonance imaging (fMRI) data collected from 51 adults with ADHD and 29 healthy controls. A novel permutation-based approach introducing studentized statistics and subject-wise voxel-level null-distributions revealed that several areas in cerebral attention networks and sensory cortices were desynchronized in participants with ADHD (n = 20) relative to healthy controls (n = 20). Specifically, desynchronization of the posterior parietal cortex occurred when irrelevant speech or music was presented in the background, but not when irrelevant white noise was presented, or when there were no distractors. We also show regionally distinct ISC signatures for inattention and impulsivity. Finally, post-scan recall of the film contents was associated with stronger ISCs in the default-mode network for the ADHD and in the dorsal attention network for healthy controls. The present study shows that ISCs can further our understanding of how a complex environment influences brain states in ADHD.
  • Rahko, Jukka S.; Vuontela, Virve A.; Carlson, Synnove; Nikkinen, Juha; Hurtig, Tuula M.; Kuusikko-Gauffin, Sanna; Mattila, Marja-Leena; Jussila, Katja K.; Remes, Jukka J.; Jansson-Verkasalo, Eira M.; Aronen, Eeva T.; Pauls, David L.; Ebeling, Hanna E.; Tervonen, Osmo; Moilanen, Irma K.; Kiviniemi, Vesa J. (2016)
    The present study examined attention and memory load-dependent differences in the brain activation and deactivation patterns between adolescents with autism spectrum disorders (ASDs) and typically developing (TD) controls using functional magnetic resonance imaging. Attentional (0-back) and working memory (WM; 2-back) processing and load differences (0 vs. 2-back) were analysed. WM-related areas activated and default mode network deactivated normally in ASDs as a function of task load. ASDs performed the attentional 0-back task similarly to TD controls but showed increased deactivation in cerebellum and right temporal cortical areas and weaker activation in other cerebellar areas. Increasing task load resulted in multiple responses in ASDs compared to TD and in inadequate modulation of brain activity in right insula, primary somatosensory, motor and auditory cortices. The changes during attentional task may reflect compensatory mechanisms enabling normal behavioral performance. The inadequate memory load-dependent modulation of activity suggests diminished compensatory potential in ASD.
  • Holm, Marja E.; Aunio, Pirjo; Björn, Piia M.; Klenberg, Liisa; Korhonen, Johan; Hannula, Markku S. (2018)
    This study investigates behavioral executive functions (EFs) in the mathematics classroom context among adolescents with different mathematics performance levels. The EF problems were assessed by teachers using a behavioral rating inventory. Using cutoff scores on a standardized mathematics assessment, groups with mathematics difficulties (MD; n = 124), low mathematics performance (LA; n = 140), and average or higher scores (AC; n = 355) were identified. Results showed that the MD group had more problems with distractibility, directing attention, shifting attention, initiative, execution of action, planning, and evaluation than the LA group, whereas the differences in hyperactivity, impulsivity, and sustaining attention were not significant. Compared to the AC group, the MD group showed more problems with all behavioral EFs except hyperactivity and impulsivity, while the LA group showed more problems only with shifting attention. Male adolescents showed more behavioral EF problems than female adolescents, but this gender difference was negligible within the MD group. The practical implications of the results are discussed.
  • Lobier, Muriel; Palva, J. Matias; Palva, Satu (2018)
    Visuospatial attention prioritizes processing of attended visual stimuli. It is characterized by lateralized alpha-band (8-14 Hz) amplitude suppression in visual cortex and increased neuronal activity in a network of frontal and parietal areas. It has remained unknown what mechanisms coordinate neuronal processing among frontoparietal network and visual cortices and implement the attention-related modulations of alpha-band amplitudes and behavior. We investigated whether large-scale network synchronization could be such a mechanism. We recorded human cortical activity with magnetoencephalography (MEG) during a visuospatial attention task. We then identified the frequencies and anatomical networks of inter-areal phase synchronization from source localized MEG data. We found that visuospatial attention is associated with robust and sustained long-range synchronization of cortical oscillations exclusively in the high-alpha (10-14 Hz) frequency band. This synchronization connected frontal, parietal and visual regions and was observed concurrently with amplitude suppression of low-alpha (6-9 Hz) band oscillations in visual cortex. Furthermore, stronger high-alpha phase synchronization was associated with decreased reaction times to attended stimuli and larger suppression of alpha-band amplitudes. These results thus show that high-alpha band phase synchronization is functionally significant and could coordinate the neuronal communication underlying the implementation of visuospatial attention.
  • Wikman, Patrik; Rinne, Teemu (2019)
    A number of previous studies have implicated regions in posterior auditory cortex (AC) in auditory-motor integration during speech production. Other studies, in turn, have shown that activation in AC and adjacent regions in the inferior parietal lobule (IPL) is strongly modulated during active listening and depends on task requirements. The present fMRI study investigated whether auditory-motor effects interact with those related to active listening tasks in AC and IPL. In separate task blocks, our subjects performed either auditory discrimination or 2-back memory tasks on phonemic or nonphonemic vowels. They responded to targets by either overtly repeating the last vowel of a target pair, overtly producing a given response vowel, or by pressing a response button. We hypothesized that the requirements for auditory-motor integration, and the associated activation, would be stronger during repetition than production responses and during repetition of nonphonemic than phonemic vowels. We also hypothesized that if auditory-motor effects are independent of task-dependent modulations, then the auditory-motor effects should not differ during discrimination and 2-back tasks. We found that activation in AC and IPL was significantly modulated by task (discrimination vs. 2-back), vocal-response type (repetition vs. production), and motor-response type (vocal vs. button). Motor-response and task effects interacted in IPL but not in AC. Overall, the results support the view that regions in posterior AC are important in auditory-motor integration. However, the present study shows that activation in wide AC and IPL regions is modulated by the motor requirements of active listening tasks in a more general manner. Further, the results suggest that activation modulations in AC associated with attention-engaging listening tasks and those associated with auditory-motor performance are mediated by independent mechanisms.
  • Sokka, Laura; Leinikka, Marianne; Korpela, Jussi; Henelius, Andreas; Ahonen, Lauri; Alain, Claude; Alho, Kimmo; Huotilainen, Minna (2016)
    Individuals with job burnout symptoms often report having cognitive difficulties, but related electrophysiological studies are scarce. We assessed the impact of burnout on performing a visual task with varying memory loads, and on involuntary attention switch to distractor sounds using scalp recordings of event-related potentials (ERPs). Task performance was comparable between burnout and control groups. The distractor sounds elicited a P3a response, which was reduced in the burnout group. This suggests burnout-related deficits in processing novel and potentially important events during task performance. In the burnout group, we also observed a decrease in working-memory related P3b responses over posterior scalp and increase over frontal areas. These results suggest that burnout is associated with deficits in cognitive control needed to monitor and update information in working memory. Successful task performance in burnout might require additional recruitment of anterior regions to compensate the decrement in posterior activity. (C) 2016 Elsevier B.V. All rights reserved.
  • Moisala, M.; Salmela, V.; Hietajarvi, L.; Salo, E.; Carlson, S.; Salonen, O.; Lonka, K.; Hakkarainen, K.; Salmela-Aro, K.; Alho, K. (2016)
    The current generation of young people indulges in more media multitasking behavior (e.g., instant messaging while watching videos) in their everyday lives than older generations. Concerns have been raised about how this might affect their attentional functioning, as previous studies have indicated that extensive mediamultitasking in everyday life may be associated with decreased attentional control. In the current study, 149 adolescents and young adults (aged 13-24 years) performed speech-listening and reading tasks that required maintaining attention in the presence of distractor stimuli in the othermodality or dividing attention between two concurrent tasks. Brain activity during task performance was measured using functional magnetic resonance imaging (fMRI). We studied the relationship between self-reported daily media multitasking (MMT), task performance and brain activity during task performance. The results showed that in the presence of distractor stimuli, a higher MMT score was associated with worse performance and increased brain activity in right prefrontal regions. The level of performance during divided attention did not depend on MMT. This suggests that daily media multitasking is associated with behavioral distractibility and increased recruitment of brain areas involved in attentional and inhibitory control, and that media multitasking in everyday life does not translate to performance benefits in multitasking in laboratory settings. (C) 2016 Elsevier Inc. All rights reserved.
  • Sokka, Laura; Leinikka, Marianne; Korpela, Jussi; Henelius, Andreas; Lukander, Jani; Pakarinen, Satu; Alho, Kimmo; Huotilainen, Minna (2017)
    Individuals with prolonged occupational stress often report difficulties in concentration. Work tasks often require the ability to switch back and forth between different contexts. Here, we studied the association between job burnout and task switching by recording event-related potentials (ERPs) time-locked to stimulus onset during a task with simultaneous cue-target presentation and unpredictable switches in the task. Participants were currently working people with severe, mild, or no burnout symptoms. In all groups, task performance was substantially slower immediately after task switch than during task repetition. However, the error rates were higher in the severe burnout group than in the mild burnout and control groups. Electrophysiological data revealed an increased parietal P3 response for the switch trials relative to repetition trials. Notably, the response was smaller in amplitude in the severe burnout group than in the other groups. The results suggest that severe burnout is associated with inadequate processing when rapid shifting of attention between tasks is required resulting in less accurate performance. (C) 2016 Elsevier B.V. All rights reserved.
  • Piitulainen, Harri; Kulmala, Juha-Pekka; Mäenpää, Helena; Rantalainen, Timo (2021)
    There is limited evidence about gait stability and its alteration by concurrent motor and cognitive tasks in children with cerebral palsy (CP). We examined gait stability and how it is altered by constrained cognitive or motor task in CP and their typically developed (TD) controls. Gait kinematics were recorded using inertial-measurement units (IMU) from 18 patients with hemiplegia (13.5 +/- 2.4 years), 12 with diplegia (13.0 +/- 2.1 years), and 31 TD controls (13.5 +/- 2.2 years) during unconstrained gait, and motor (carrying a tray) and cognitive (word naming) task constrained gait at preferred speed (similar to 400 steps/task). Step duration, its standard deviation and refined-compound-multiscale entropy (RCME) were computed independently for vertical and resultant horizontal accelerations. Gait complexity was higher for patients with CP than TD in all tasks and directions (p <0.001-0.01), being pronounced in vertical direction, cognitive task and for diplegic patients (p <0.05-0.001). The gait complexity increased more (i.e. higher dual-task cost) from the unconstrained to the constrained gait in CP compared to TD (p <0.05). Step duration was similar in all groups (p > 0.586), but its variation was higher in CP than TD (p <0.001-0.05), and during the constrained than unconstrained gait in all groups (p <0.01-0.001). The gait in children with CP was more complex and the dual-task cost was higher primarily for children with diplegic CP than TD during cognitive task, indicating that attentional load hinders their gait more. This raises the hypothesis that more attention and cortical resources are needed to compensate for the impaired gait in children with CP. (c) 2021 The Author(s). Published by Elsevier Ltd.