Browsing by Subject "BACTERIAL PHYTOCHROME"

Sort by: Order: Results:

Now showing items 1-3 of 3
  • Shcherbakova, Daria M.; Cammer, Natasha Cox; Huisman, Tsipora M.; Verkhusha, Vladislav V.; Hodgson, Louis (2018)
    Direct visualization and light control of several cellular processes is a challenge, owing to the spectral overlap of available genetically encoded probes. Here we report the most red-shifted monomeric near-infrared (NIR) fluorescent protein, miRFP720, and the fully NIR Forster resonance energy transfer (FRET) pair miRFP670-miRFP720, which together enabled design of biosensors compatible with CFP-YFP imaging and blue-green optogenetic tools. We developed a NIR biosensor for Rac1 GTPase and demonstrated its use in multiplexed imaging and light control of Rho GTPase signaling pathways. Specifically, we combined the Rac1 biosensor with CFP-YFP FRET biosensors for RhoA and for Rac1-GDI binding, and concurrently used the LOV-TRAP tool for upstream Rac1 activation. We directly observed and quantified antagonism between RhoA and Rac1 dependent on the RhoA-downstream effector ROCK; showed that Rac1 activity and GDI binding closely depend on the spatiotemporal coordination between these two molecules; and simultaneously observed Rac1 activity during optogenetic manipulation of Rac1.
  • Stepanenko, Olesya V.; Stepanenko, Olga V.; Bublikov, G. S.; Kuznetsova, I. M.; Verkhusha, Vladislav; Turoverov, K. K. (2017)
    Near-infrared fluorescent proteins (NIR FPs) engineered from bacterial phytochromes and their mutants with different location of Cys residues, which able to bind a biliverdin chromophore, or without these Cys residues were studied using intrinsic tryptophan fluorescence, NIR fluorescence and circular dichroism. It was shown that a covalent binding of the biliverdin chromophore to a Cys residue via thioether group substantially stabilizes the spatial structure of NIR FPs. The stability of the protein structure and the chromophore association strength strongly depends on the location of Cys residues and decreases in the following order: a protein with Cys residues in both domains, a protein with Cys in PAS domains, and a protein with Cys in GAF domains. NIR FPs without Cys residues capable to covalently attach biliverdin have the lowest stability, comparable to NIR FP apoforms. (C) 2016 Elsevier B.V. All rights reserved.
  • Zhu, Jingyi; Shcherbakova, Daria M.; Hontani, Yusaku; Verkhusha, Vladislav V.; Kennis, John T. M. (2015)
    Near-infrared fluorescent proteins, iRFPs, are recently developed genetically encoded fluorescent probes for deep-tissue in vivo imaging. Their functions depend on the corresponding fluorescence efficiencies and electronic excited state properties. Here we report the electronic excited state deactivation dynamics of the most red-shifted iRFPs: iRFP702, iRFP713 and iRFP720. Complementary measurements by ultrafast broadband fluorescence and absorption spectroscopy show that single exponential decays of the excited state with 600 similar to 700 ps dominate in all three iRFPs, while photoinduced isomerization was completely inhibited. Significant kinetic isotope effects (KIE) were observed with a factor of similar to 1.8 in D2O, and are interpreted in terms of an excited-state proton transfer (ESPT) process that deactivates the excited state in competition with fluorescence and chromophore mobility. On this basis, new approaches for rational molecular engineering may be applied to iRFPs to improve their fluorescence.