Browsing by Subject "BACTERIAL PRODUCTION"

Sort by: Order: Results:

Now showing items 1-4 of 4
  • Camarena-Gomez, Maria Teresa; Ruiz-Gonzalez, Clara; Piiparinen, Jonna; Lipsewers, Tobias; Sobrino, Cristina; Logares, Ramiro; Spilling, Kristian (2021)
    In parts of the Baltic Sea, the phytoplankton spring bloom communities, commonly dominated by diatoms, are shifting toward the co-occurrence of diatoms and dinoflagellates. Although phytoplankton are known to shape the composition and function of associated bacterioplankton communities, the potential bacterial responses to such a decrease of diatoms are unknown. Here we explored the changes in bacterial communities and heterotrophic production during the spring bloom in four consecutive spring blooms across several sub-basins of the Baltic Sea and related them to changes in environmental variables and in phytoplankton community structure. The taxonomic structure of bacterioplankton assemblages was partially explained by salinity and temperature but also linked to the phytoplankton community. Higher carbon biomass of the diatomsAchnanthes taeniata,Skeletonema marinoi,Thalassiosira levanderi, andChaetocerosspp. was associated with more diverse bacterial communities dominated by copiotrophic bacteria (Flavobacteriia, Gammaproteobacteria, and Betaproteobacteria) and higher bacterial production. During dinoflagellate dominance, bacterial production was low and bacterial communities were dominated by Alphaproteobacteria, mainly SAR11. Our results suggest that increases in dinoflagellate abundance during the spring bloom will largely affect the structuring and functioning of the associated bacterial communities. This could decrease pelagic remineralization of organic matter and possibly affect the bacterial grazers communities.
  • Silva, Luis; Calleja, Maria Ll.; Ivetic, Snjezana; Huete-Stauffer, Tamara; Roth, Florian; Carvalho, Susana; Moran, Xose Anxelu G. (2021)
    In coral reefs, dissolved organic matter (DOM) cycling is a critical process for sustaining ecosystem functioning. However, global and local stressors have caused persistent shifts from coral- to algae-dominated benthic communities. The influence of such phase shifts on DOM nature and its utilization by heterotrophic bacterioplankton remains poorly studied. Every second month for one year, we retrieved seawater samples enriched in DOM produced by coral- and algae-dominated benthic communities in a central Red Sea reef during a full annual cycle. Seawater incubations were conducted in the laboratory under in situ temperature and light conditions by inoculating enriched DOM samples with bacterial assemblages collected in the surrounding waters. Dissolved organic carbon (DOC) concentrations were higher in the warmer months (May-September) in both communities, resulting in higher specific growth rates and bacterial growth efficiencies (BGE). However, these high summer values were significantly enhanced in algal-DOM relative to coral-DOM, suggesting the potential for bacterioplankton biomass increase in reefs with algae replacing healthy coral cover under warmer conditions. The potential exacerbation of heterotrophic bacterial activity in the ongoing widespread regime shift from coral- to algae-dominated communities may have detrimental consequences for the overall health of tropical coral reefs. (C) 2020 The Authors. Published by Elsevier B.V.
  • Andersson, A.; Brugel, S.; Paczkowska, J.; Rowe, O.F.; Figueroa, D.; Kratzer, S.; Legrand, C. (2018)
    Phytoplankton and heterotrophic bacteria are key groups at the base of aquatic food webs. In estuaries receiving riverine water with a high content of coloured allochthonous dissolved organic matter (ADOM), phytoplankton primary production may be reduced, while bacterial production is favoured. We tested this hypothesis by performing a field study in a northerly estuary receiving nutrient-poor, ADOM-rich riverine water, and analyzing results using multivariate statistics. Throughout the productive season, and especially during the spring river flush, the production and growth rate of heterotrophic bacteria were stimulated by the riverine inflow of dissolved organic carbon (DOC). In contrast, primary production and photosynthetic efficiency (i.e. phytoplankton growth rate) were negatively affected by DOC. Primary production related positively to phosphorus, which is the limiting nutrient in the area. In the upper estuary where DOC concentrations were the highest, the heterotrophic bacterial production constituted almost 100% of the basal production (sum of primary and bacterial production) during spring, while during summer the primary and bacterial production were approximately equal. Our study shows that riverine DOC had a strong negative influence on coastal phytoplankton production, likely due to light attenuation. On the other hand DOC showed a positive influence on bacterial production since it represents a supplementary food source. Thus, in boreal regions where climate change will cause increased river inflow to coastal waters, the balance between phytoplankton and bacterial production is likely to be changed, favouring bacteria. The pelagic food web structure and overall productivity will in turn be altered. (C) 2018 The Authors. Published by Elsevier Ltd.
  • Song, Shuang; Li, Changyou; Shi, Xiaohong; Zhao, Shegnan; Tian, Weidong; Li, Zhijun; Bai, Yila; Cao, Xiaowei; Wang, Qingkai; Huotari, Jussi; Tulonen, Tiina; Uusheimo, Sari; Leppäranta, Matti; Loehr, John; Arvola, Lauri (2019)
    Winter is a long period of the annual cycle of many lakes in the northern hemisphere. Low irradiance, ice, and snow cover cause poor light penetration into the water column of these lakes. Therefore, in northern lakes, respiration often exceeds primary production leading to low dissolved oxygen concentrations. This study aimed to quantify under-ice metabolic processes during winter in an arid zone lake with little snow cover. This study was carried out in a mid-latitude lake in Inner Mongolia, northern China. The study lake receives relatively high incoming solar radiation on the ice in mid-winter, and radiation can penetrate down to the bottom sediment as the lake is shallow and the ice lacks snow cover. Primary production and respiration were estimated during two winters using high-frequency sensor measurements of dissolved oxygen. To quantify under-ice metabolic processes, sensors were deployed to different depths. During both winters, sensors collected data every 10 min over several weeks. The amount of solar radiation controlled photosynthesis under ice; temperature and photosynthesis together appeared to control respiration. The balance between gross primary production and ecosystem respiration was especially sensitive to changes in snow cover, and the balance between P and R decreased. Our data suggest that photosynthesis by plankton, submerged plants, and epiphytic algae may continue over winter in shallow lakes in mid-latitudes when there is no snow cover on the ice, as may occur in arid climates. The continuation of photosynthesis under ice buffers against dissolved oxygen depletion and prevents consequent harmful ecosystem effects.