Sort by: Order: Results:

Now showing items 1-15 of 15
  • Montanari, Francesco; Räsänen, Syksy (2017)
    If the FRW metric is a good approximation on large scales, then the distance and the expansion rate, as well different notions of distance, satisfy certain consistency conditions. We fit the JLA SNIa distance data to determine the expected amplitude of the violation of these conditions if accelerated expansion is due to backreaction. Adding cosmic clock and BAO expansion rate data, we also model-independently determine the current observational limits on such violation. We find that the predicted maximum backreaction amplitude vertical bar k(H)vertical bar less than or similar to 1 (95% C.I.) is of the same order as the current observational constraints vertical bar k(H)vertical bar less than or similar to 1, the precise numbers depending on the adopted fitting method (polynomials or splines) and stellar population evolution model. We also find that constraints on the value of Ho determined from expansion rate data are sensitive to the stellar evolution model. We forecast constraints from projected LSST+Euclid-like SNIa plus Euclid galaxy differential age data. We find improvement by factor of 6 for the backreaction case and 3 for the model-independent case, probing an interesting region of possible signatures.
  • Chitham, J. Ider; Comparat, J.; Finoguenov, A.; Clerc, N.; Kirkpatrick, C. C.; Damsted, S.; Kukkola, A.; Capasso, R.; Nandra, K.; Merloni, A.; Bulbul, E.; Rykoff, E. S.; Schneider, D. P.; Brownstein, J. R. (2020)
    This paper presents a cosmological analysis based on the properties of X-ray selected clusters of galaxies from the CODEX survey which have been spectroscopically followed up within the SPIDERS programme as part of the sixteenth data release (DR16) of SDSS-IV. The cosmological sub-sample contains a total of 691 clusters over an area of 5350 deg(2) with newly measured optical properties provided by a reanalysis of the CODEX source catalogue using redMaPPer and the DESI Legacy Imaging Surveys (DR8). Optical richness is used as a proxy for the cluster mass, and the combination of X-ray, optical, and spectroscopic information ensures that only confirmed virialized systems are considered. Clusters are binned in observed redshift, (z) over tilde is an element of [0.1, 0.6) and optical richness, (lambda) over tilde is an element of[25, 148) and the number of clusters in each bin is modelled as a function of cosmological and richness-mass scaling relation parameters. A high-purity sub-sample of 691 clusters is used in the analysis and best-fitting cosmological parameters are found to be Omega m(0) = 0.34(-0.05)(+0.09) and sigma(8) = 0.73(-0.03)(+0.03). The redshift evolution of the self-calibrated richness-mass relation is poorly constrained due to the systematic uncertainties associated with the X-ray component of the selection function (which assumes a fixed X-ray luminosity-mass relation with h = 0.7 and Omega m(0) = 0.30). Repeating the analysis with the assumption of no redshift evolution is found to improve the consistency between both cosmological and scaling relation parameters with respect to recent galaxy cluster analyses in the literature.
  • Martinelli, M.; Martins, C. J. A. P.; Nesseris, S.; Sapone, D.; Tutusaus, I.; Avgoustidis, A.; Camera, S.; Carbone, C.; Casas, S.; Ilic, S.; Sakr, Z.; Yankelevich, V.; Auricchio, N.; Balestra, A.; Bodendorf, C.; Bonino, D.; Branchini, E.; Brescia, M.; Brinchmann, J.; Capobianco, V.; Carretero, J.; Castellano, M.; Cavuoti, S.; Cledassou, R.; Congedo, G.; Conversi, L.; Corcione, L.; Dubath, F.; Ealet, A.; Frailis, M.; Franceschi, E.; Fumana, M.; Garilli, B.; Gillis, B.; Giocoli, C.; Grupp, F.; Haugan, S. V. H.; Holmes, W.; Hormuth, F.; Jahnke, K.; Kermiche, S.; Kilbinger, M.; Kitching, T. D.; Kubik, B.; Kunz, M.; Kurki-Suonio, H.; Ligori, S.; Lilje, P. B.; Lloro, I.; Marggraf, O.; Markovic, K.; Massey, R.; Mei, S.; Meneghetti, M.; Meylan, G.; Moscardini, L.; Niemi, S.; Padilla, C.; Paltani, S.; Pasian, F.; Pettorino, V.; Pires, S.; Polenta, G.; Poncet, M.; Popa, L.; Pozzetti, L.; Raison, F.; Rhodes, J.; Roncarelli, M.; Saglia, R.; Schneider, P.; Secroun, A.; Serrano, S.; Sirignano, C.; Sirri, G.; Sureau, F.; Taylor, A. N.; Tereno, I.; Toledo-Moreo, R.; Valenziano, L.; Vassallo, T.; Wang, Y.; Welikala, N.; Weller, J.; Zacchei, A. (2020)
    Context. In metric theories of gravity with photon number conservation, the luminosity and angular diameter distances are related via the Etherington relation, also known as the distance duality relation (DDR). A violation of this relation would rule out the standard cosmological paradigm and point to the presence of new physics.Aims. We quantify the ability of Euclid, in combination with contemporary surveys, to improve the current constraints on deviations from the DDR in the redshift range 0<z<1.6.Methods. We start with an analysis of the latest available data, improving previously reported constraints by a factor of 2.5. We then present a detailed analysis of simulated Euclid and external data products, using both standard parametric methods (relying on phenomenological descriptions of possible DDR violations) and a machine learning reconstruction using genetic algorithms.Results. We find that for parametric methods Euclid can (in combination with external probes) improve current constraints by approximately a factor of six, while for non-parametric methods Euclid can improve current constraints by a factor of three.Conclusions. Our results highlight the importance of surveys like Euclid in accurately testing the pillars of the current cosmological paradigm and constraining physics beyond the standard cosmological model.
  • Renk, Janina; Zumalacarregui, Miguel; Montanari, Francesco; Barreira, Alexandre (2017)
    Cosmological models with Galileon gravity are an alternative to the standard ACDM paradigm with testable predictions at the level of its self-accelerating solutions for the expansion history, as well as large-scale structure formation. Here, we place constraints on the full parameter space of these models using data from the cosmic microwave background (CMB) (including lensing), baryonic acoustic oscillations (BAO) and the Integrated Sachs Wolfe (ISW) effect. We pay special attention to the ISW effect for which we use the cross spectra, C-l(Tg), of CMB temperature maps and foreground galaxies from the WISE survey. The sign of C-l(Tg) is set by the time evolution of the lensing potential in the redshift range of the galaxy sample: it is positive if the potential decays (like in ACDM), negative if it deepens. We constrain three subsets of Galileon gravity separately known as the Cubic, Quartic and Quintic Galileons. The cubic Galileon model predicts a negative C-l(Tg) and exhibits a 7.8 sigma tension with the data, which effectively rules it out. For the quartic and quintic models the ISW data also rule out a significant portion of the parameter space but permit regions where the goodness-of-fit is comparable to ACDM. The data prefers a non zero sum of the neutrino masses (Sigma m(v) approximate to 0.5eV) with similar to 5 sigma significance in these models. The best-fitting models have values of Ho consistent with local determinations, thereby avoiding the tension that exists in ACDM. We also identify and discuss a similar to 2 sigma tension that Galileon gravity exhibits with recent BAO measurements. Our analysis shows overall that Galileon cosmologies cannot be ruled out by current data but future lensing, BAO and ISW data hold strong potential to do so.
  • Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoit, A.; Benoit-Levy, A.; Bernard, J. -P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cappellini, B.; Cardoso, J. -F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R. -R.; Chen, X.; Chiang, H. C.; Chiang, L. -Y; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J. -M.; Desert, F. -X.; Dickinson, C.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; Dore, O.; Douspis, M.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Elsner, F.; Ensslin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Gaier, T. C.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Heraud, Y.; Gjerlow, E.; Gonzalez-Nuevo, J.; Gorski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Haissinski, J.; Hamann, J.; Hansen, F. K.; Hanson, D.; Harrison, D.; Henrot-Versille, S.; Hernandez-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hou, Z.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jewell, J.; Jones, W. C.; Juvela, M.; Keihanen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lahteenmaki, A.; Lamarre, J. -M.; Lasenby, A.; Lattanzi, M.; Laureijs, R. J.; Lawrence, C. R.; Leach, S.; Leahy, J. P.; Leonardi, R.; Leon-Tavares, J.; Lesgourgues, J.; Lewis, A.; Liguori, M.; Lilje, P. B.; Linden-Vornle, M.; Lopez-Caniego, M.; Lubin, P. M.; Macias-Perez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martinez-Gonzalez, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Meinhold, P. R.; Melchiorri, A.; Melin, J. -B.; Mendes, L.; Menegoni, E.; Mennella, A.; Migliaccio, M.; Millea, M.; Mitra, S.; Miville-Deschenes, M. -A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Norgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; O'Dwyer, I. J.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, D.; Pearson, T. J.; Peiris, H. V.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Platania, P.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prezeau, G.; Prunet, S.; Puget, J. -L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rubino-Martin, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Starck, J. -L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sureau, F.; Sutton, D.; Suur-Uski, A. -S.; Sygnet, J. -F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Tuerler, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, A.; Wandelt, B. D.; Wehus, I. K.; White, M.; White, S. D. M.; Wilkinson, A.; Yvon, D.; Zacchei, A.; Zonca, A. (2014)
  • Ade, P. A. R.; Juvela, M.; Keihanen, E.; Kurki-Suonio, H.; Poutanen, T.; Suur-Uski, A. -S.; Tuovinen, J.; Valiviita, J.; Planck Collaboration (2014)
  • Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoit, A.; Benoit-Levy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Juvela, M.; Keihänen, Elina; Keskitalo, R.; Kurki-Suonio, H.; Poutanen, T.; Savelainen, M.; Suur-Uski, A.-S.; Tuovinen, J.; Valiviita, J. (2014)
    We analyse the implications of the Planck data for cosmic inflation. The Planck nominal mission temperature anisotropy measurements, combined with the WMAP large-angle polarization, constrain the scalar spectral index to be n(s) = 0.9603 +/- 0:0073, ruling out exact scale invariance at over 5 sigma Planck establishes an upper bound on the tensor-to-scalar ratio of r <0.11 (95% CL). The Planck data thus shrink the space of allowed standard inflationary models preferring potentials with V '' <0. Exponential potential models, the simplest hybrid inflationary models, and monomial potential models of degree n >= 2 do not provide a good fit to the data. Planck does not find statistically significant running of the scalar spectral index, obtaining dn(s)/dln k = -0.0134 +/- 0.0090. We verify these conclusions through a numerical analysis, which makes no slowroll approximation, and carry out a Bayesian parameter estimation and model-selection analysis for a number of inflationary models including monomial, natural, and hilltop potentials. For each model, we present the Planck constraints on the parameters of the potential and explore several possibilities for the post-inflationary entropy generation epoch, thus obtaining nontrivial data-driven constraints. We also present a direct reconstruction of the observable range of the inflaton potential. Unless a quartic term is allowed in the potential, we find results consistent with second-order slow-roll predictions. We also investigate whether the primordial power spectrum contains any features. We find that models with a parameterized oscillatory feature improve the fit by delta 2 10; however, Bayesian evidence does not prefer these models. We constrain several single-field inflation models with generalized Lagrangians by combining power spectrum data with Planck bounds on fNL. Planck constrains with unprecedented accuracy the amplitude and possible correlation (with the adiabatic mode) of non-decaying isocurvature fluctuations. The fractional primordial contributions of cold dark matter (CDM) isocurvature modes of the types expected in the curvaton and axion scenarios have upper bounds of 0.25% and 3.9% (95% CL), respectively. In models with arbitrarily correlated CDM or neutrino isocurvature modes, an anticorrelated isocurvature component can improve the 2 by approximately 4 as a result of slightly lowering the theoretical prediction for the 40 multipoles relative to the higher multipoles. Nonetheless, the data are consistent with adiabatic initial conditions.
  • Planck Collaboration; Aghanim, N.; Keihanen, E.; Kiiveri, K.; Kurki-Suonio, H.; Lindholm, V.; Savelainen, M.; Suur-Uski, A. -S. (2020)
    The European Space Agency's Planck satellite, which was dedicated to studying the early Universe and its subsequent evolution, was launched on 14 May 2009. It scanned the microwave and submillimetre sky continuously between 12 August 2009 and 23 October 2013, producing deep, high-resolution, all-sky maps in nine frequency bands from 30 to 857 GHz. This paper presents the cosmological legacy of Planck, which currently provides our strongest constraints on the parameters of the standard cosmological model and some of the tightest limits available on deviations from that model. The 6-parameter Lambda CDM model continues to provide an excellent fit to the cosmic microwave background data at high and low redshift, describing the cosmological information in over a billion map pixels with just six parameters. With 18 peaks in the temperature and polarization angular power spectra constrained well, Planck measures five of the six parameters to better than 1% (simultaneously), with the best-determined parameter (theta (*)) now known to 0.03%. We describe the multi-component sky as seen by Planck, the success of the Lambda CDM model, and the connection to lower-redshift probes of structure formation. We also give a comprehensive summary of the major changes introduced in this 2018 release. The Planck data, alone and in combination with other probes, provide stringent constraints on our models of the early Universe and the large-scale structure within which all astrophysical objects form and evolve. We discuss some lessons learned from the Planck mission, and highlight areas ripe for further experimental advances.
  • Planck Collaboration; Aghanim, N.; Keihanen, E.; Kiiveri, K.; Kurki-Suonio, H.; Lindholm, V.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J. (2020)
    We present cosmological parameter results from the final full-mission Planck measurements of the cosmic microwave background (CMB) anisotropies, combining information from the temperature and polarization maps and the lensing reconstruction. Compared to the 2015 results, improved measurements of large-scale polarization allow the reionization optical depth to be measured with higher precision, leading to significant gains in the precision of other correlated parameters. Improved modelling of the small-scale polarization leads to more robust constraints on many parameters, with residual modelling uncertainties estimated to affect them only at the 0.5 sigma level. We find good consistency with the standard spatially-flat 6-parameter Lambda CDM cosmology having a power-law spectrum of adiabatic scalar perturbations (denoted "base Lambda CDM" in this paper), from polarization, temperature, and lensing, separately and in combination. A combined analysis gives dark matter density Omega (c)h(2)=0.120 +/- 0.001, baryon density Omega (b)h(2)=0.0224 +/- 0.0001, scalar spectral index n(s)=0.965 +/- 0.004, and optical depth tau =0.054 +/- 0.007 (in this abstract we quote 68% confidence regions on measured parameters and 95% on upper limits). The angular acoustic scale is measured to 0.03% precision, with 100 theta (*)=1.0411 +/- 0.0003. These results are only weakly dependent on the cosmological model and remain stable, with somewhat increased errors, in many commonly considered extensions. Assuming the base-Lambda CDM cosmology, the inferred (model-dependent) late-Universe parameters are: Hubble constant H-0=(67.4 +/- 0.5) km s(-1) Mpc(-1); matter density parameter Omega (m)=0.315 +/- 0.007; and matter fluctuation amplitude sigma (8)=0.811 +/- 0.006. We find no compelling evidence for extensions to the base-Lambda CDM model. Combining with baryon acoustic oscillation (BAO) measurements (and considering single-parameter extensions) we constrain the effective extra relativistic degrees of freedom to be N-eff=2.99 +/- 0.17, in agreement with the Standard Model prediction N-eff=3.046, and find that the neutrino mass is tightly constrained to Sigma m(nu)<0.12 eV. The CMB spectra continue to prefer higher lensing amplitudes than predicted in base CDM at over 2 sigma, which pulls some parameters that affect the lensing amplitude away from the Lambda CDM model; however, this is not supported by the lensing reconstruction or (in models that also change the background geometry) BAO data. The joint constraint with BAO measurements on spatial curvature is consistent with a flat universe, Omega (K)=0.001 +/- 0.002. Also combining with Type Ia supernovae (SNe), the dark-energy equation of state parameter is measured to be w(0)=-1.03 +/- 0.03, consistent with a cosmological constant. We find no evidence for deviations from a purely power-law primordial spectrum, and combining with data from BAO, BICEP2, and Keck Array data, we place a limit on the tensor-to-scalar ratio r(0.002)<0.06. Standard big-bang nucleosynthesis predictions for the helium and deuterium abundances for the base-CDM cosmology are in excellent agreement with observations. The Planck base-Lambda CDM results are in good agreement with BAO, SNe, and some galaxy lensing observations, but in slight tension with the Dark Energy Survey's combined-probe results including galaxy clustering (which prefers lower fluctuation amplitudes or matter density parameters), and in significant, 3.6 sigma, tension with local measurements of the Hubble constant (which prefer a higher value). Simple model extensions that can partially resolve these tensions are not favoured by the Planck data.
  • Planck Collaboration; Akrami, Y.; Keihanen, E.; Kiiveri, K.; Kurki-Suonio, H.; Lindholm, V.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J. (2020)
    We report on the implications for cosmic inflation of the 2018 release of the Planck cosmic microwave background (CMB) anisotropy measurements. The results are fully consistent with those reported using the data from the two previous Planck cosmological releases, but have smaller uncertainties thanks to improvements in the characterization of polarization at low and high multipoles. Planck temperature, polarization, and lensing data determine the spectral index of scalar perturbations to be n(s)=0.9649 +/- 0.0042 at 68% CL. We find no evidence for a scale dependence of n(s), either as a running or as a running of the running. The Universe is found to be consistent with spatial flatness with a precision of 0.4% at 95% CL by combining Planck with a compilation of baryon acoustic oscillation data. The Planck 95% CL upper limit on the tensor-to-scalar ratio, r(0.002)<0.10, is further tightened by combining with the BICEP2/Keck Array BK15 data to obtain r(0.002)<0.056. In the framework of standard single-field inflationary models with Einstein gravity, these results imply that: (a) the predictions of slow-roll models with a concave potential, V(phi) <0, are increasingly favoured by the data; and (b) based on two different methods for reconstructing the inflaton potential, we find no evidence for dynamics beyond slow roll. Three different methods for the non-parametric reconstruction of the primordial power spectrum consistently confirm a pure power law in the range of comoving scales 0.005 Mpc(-1)k less than or similar to 0.2 Mpc(-1). A complementary analysis also finds no evidence for theoretically motivated parameterized features in the Planck power spectra. For the case of oscillatory features that are logarithmic or linear in k, this result is further strengthened by a new combined analysis including the Planck bispectrum data. The new Planck polarization data provide a stringent test of the adiabaticity of the initial conditions for the cosmological fluctuations. In correlated, mixed adiabatic and isocurvature models, the non-adiabatic contribution to the observed CMB temperature variance is constrained to 1.3%, 1.7%, and 1.7% at 95% CL for cold dark matter, neutrino density, and neutrino velocity, respectively. Planck power spectra plus lensing set constraints on the amplitude of compensated cold dark matter-baryon isocurvature perturbations that are consistent with current complementary measurements. The polarization data also provide improved constraints on inflationary models that predict a small statistically anisotropic quadupolar modulation of the primordial fluctuations. However, the polarization data do not support physical models for a scale-dependent dipolar modulation. All these findings support the key predictions of the standard single-field inflationary models, which will be further tested by future cosmological observations.
  • Ade, P. A. R.; Juvela, M.; Keihanen, E.; Kurki-Suonio, H.; Lähteenmäki, Anne; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.; Planck Collaboration (2014)
  • Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.; Benoit-Levy, A.; Bernard, J. -P.; Bersanelli, M.; Bielewicz, P.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Burigana, C.; Butler, R. C.; Calabrese, E.; Chamballu, A.; Chiang, H. C.; Christensen, P. R.; Clements, D. L.; Colombo, L. P. L.; Couchot, F.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Diego, J. M.; Dole, H.; Dore, O.; Dupac, X.; Ensslin, T. A.; Eriksen, H. K.; Fabre, O.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Keihänen, E.; Kurki-Suonio, H.; Suur-Uski, A. -S.; Valiviita, J. (2015)
    Any variation in the fundamental physical constants, more particularly in the fine structure constant, a, or in the mass of the electron, me, affects the recombination history of the Universe and cause an imprint on the cosmic microwave background angular power spectra. We show that the Planck data allow one to improve the constraint on the time variation of the fine structure constant at redshift z - 10(3) by about a factor of 5 compared to WMAP data, as well as to break the degeneracy with the Hubble constant, H-0. In addition to a, we can set a constraint on the variation in the mass of the electron, me, and in the simultaneous variation of the two constants. We examine in detail the degeneracies between fundamental constants and the cosmological parameters, in order to compare the limits obtained from Planck and WMAP and to determine the constraining power gained by including other cosmological probes. We conclude that independent time variations of the fine structure constant and of the mass of the electron are constrained by Planck to Delta alpha/alpha = (3.6 +/- 3.7) x 10(-3) and Delta m(e)/m(e) = (4 +/- 11) x 10(-3) at the 68% confidence level. We also investigate the possibility of a spatial variation of the fine structure constant. The relative amplitude of a dipolar spatial variation in a (corresponding to a gradient across our Hubble volume) is constrained to be delta alpha/alpha = (-2.4 +/- 3.7) x 10(-2).
  • Casas, Santiago; Karananas, Georgios K.; Pauly, Martin; Rubio, Javier (2019)
    We discuss the cosmological phenomenology of biscalar-tensor models displaying a maximally symmetric Einstein-frame kinetic sector and constructed on the basis of scale symmetry and volumepreserving diffeomorphisms. These theories contain a single dimensionful parameter Lambda(0) -associated with the invariance under the aforementioned restricted coordinate transformations-and a massless dilaton field. At large field values these scenarios lead to inflation with no generation of isocurvature perturbations. The corresponding predictions depend only on two dimensionless parameters, which characterize the curvature of the field manifold and the leading-order behavior of the inflationary potential. For Lambda(0) = 0 the scale symmetry is unbroken and the dilaton admits only derivative couplings to matter, evading all fifthforce constraints. For Lambda(0)( )not equal 0 the field acquires a runaway potential that can support a dark-energy - dominated era at late times. We confront a minimalistic realization of this appealing framework with observations using a Markov chain Monte Carlo approach, with likelihoods from present baryon acoustic oscillation, type la supernova, and cosmic microwave background data. A Bayesian model comparison indicates a preference for the considered model over ACDM, under certain assumptions for the priors. The impact of possible consistency relations among the early and late Universe dynamics that can appear within this setting is discussed with the use of correlation matrices. The results indicate that a precise determination of the inflationary observables and the dark energy equation of state could significantly constrain the model parameters.
  • Alam, Shadab; Finoguenov, Alexis; Sloan Digital Sky Survey (2015)
    The third generation of the Sloan Digital Sky Survey (SDSS-III) took data from 2008 to 2014 using the original SDSS wide-field imager, the original and an upgraded multi-object fiber-fed optical spectrograph, a new near-infrared high-resolution spectrograph, and a novel optical interferometer. All of the data from SDSS-III are now made public. In particular, this paper describes Data Release 11 (DR11) including all data acquired through 2013 July, and Data Release 12 (DR12) adding data acquired through 2014 July (including all data included in previous data releases), marking the end of SDSS-III observing. Relative to our previous public release (DR10), DR12 adds one million new spectra of galaxies and quasars from the Baryon Oscillation Spectroscopic Survey (BOSS) over an additional 3000 deg(2) of sky, more than triples the number of H-band spectra of stars as part of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE), and includes repeated accurate radial velocity measurements of 5500 stars from the Multi-object APO Radial Velocity Exoplanet Large-area Survey (MARVELS). The APOGEE outputs now include the measured abundances of 15 different elements for each star. In total, SDSS-III added 5200 deg(2) of ugriz imaging; 155,520 spectra of 138,099 stars as part of the Sloan Exploration of Galactic Understanding and Evolution 2 (SEGUE-2) survey; 2,497,484 BOSS spectra of 1,372,737 galaxies, 294,512 quasars, and 247,216 stars over 9376 deg(2); 618,080 APOGEE spectra of 156,593 stars; and 197,040 MARVELS spectra of 5513 stars. Since its first light in 1998, SDSS has imaged over 1/3 of the Celestial sphere in five bands and obtained over five million astronomical spectra.