Sort by: Order: Results:

Now showing items 1-2 of 2
  • Raulo, Aura; Dantzer, Ben (2018)
    The causes and consequences of individual differences in animal behavior and stress physiology are increasingly studied in wild animals, yet the possibility that stress physiology underlies individual variation in social behavior has received less attention. In this review, we bring together these study areas and focus on understanding how the activity of the vertebrate neuroendocrine stress axis (HPA-axis) may underlie individual differences in social behavior in wild animals. We first describe a continuum of vertebrate social behaviors spanning from initial social tendencies (proactive behavior) to social behavior occurring in reproductive contexts (parental care, sexual pair-bonding) and lastly to social behavior occurring in nonreproductive contexts (nonsexual bonding, group-level cooperation). We then perform a qualitative review of existing literature to address the correlative and causal association between measures of HPA-axis activity (glucocorticoid levels or GCs) and each of these types of social behavior. As expected, elevated HPA-axis activity can inhibit social behavior associated with initial social tendencies (approaching conspecifics) and reproduction. However, elevated HPA-axis activity may also enhance more elaborate social behavior outside of reproductive contexts, such as alloparental care behavior. In addition, the effect of GCs on social behavior can depend upon the sociality of the stressor (cause of increase in GCs) and the severity of stress (extent of increase in GCs). Our review shows that the while the associations between stress responses and sociality are diverse, the role of HPA-axis activity behind social behavior may shift toward more facilitating and less inhibiting in more social species, providing insight into how stress physiology and social systems may co-evolve.
  • Noreikiene, K.; Öst, M.; Seltmann, M. W.; Boner, W.; Monaghan, P.; Jaatinen, K. (2017)
    Habitat-associated crypsis may affect perceived predation vulnerability, selecting for different predator avoidance strategies. Glucocorticoids could mediate the adjustment of escape responses to the extent of crypsis, introducing an overlooked source of variation in glucocorticoid-fitness relationships. However, prolonged exposure to elevated glucocorticoids may be costly, leading to accelerated telomere loss and, consequently, senescence. Here, we examined how nest cover and immunoreactive faecal glucocorticoid metabolite (fGCM) levels are linked to hatching success and telomere length in breeding female Common Eiders (Somateria mollissima (L., 1758)). We hypothesized that the degree of nest crypsis, reflecting differences in perceived predation risk, would moderate the relationship between reproductive success and fGCM levels. We also expected that telomere length would be shorter in birds with higher glucocorticoid concentration. Results showed that individuals with high fGCM levels had higher hatching success in nests with low cover, while low fGCM levels were more successful in well-concealed nests. We found that shorter telomeres were associated with high fGCM in nesting sites offering little cover and with low fGCM in well-concealed ones. This study provides the first evidence of habitat-dependent moderation of the relationships between stress physiology, telomere length and hatching success.