Browsing by Subject "BEETLES COLEOPTERA"

Sort by: Order: Results:

Now showing items 1-4 of 4
  • Boieiro, Mario; Matthews, Thomas J.; Rego, Carla; Crespo, Luis; Aguiar, Carlos A. S.; Cardoso, Pedro; Rigal, Francois; Silva, Isamberto; Pereira, Fernando; Borges, Paulo A. V.; Serrano, Artur R. M. (2018)
    During the last few centuries oceanic island biodiversity has been drastically modified by human-mediated activities. These changes have led to the increased homogenization of island biota and to a high number of extinctions lending support to the recognition of oceanic islands as major threatspots worldwide. Here, we investigate the impact of habitat changes on the spider and ground beetle assemblages of the native forests of Madeira (Madeira archipelago) and Terceira (Azores archipelago) and evaluate its effects on the relative contribution of rare endemics and introduced species to island biodiversity patterns. We found that the native laurel forest of Madeira supported higher species richness of spiders and ground beetles compared with Terceira, including a much larger proportion of indigenous species, particularly endemics. In Terceira, introduced species are well-represented in both terrestrial arthropod taxa and seem to thrive in native forests as shown by the analysis of species abundance distributions (SAD) and occupancy frequency distributions (OFD). Low abundance range-restricted species in Terceira are mostly introduced species dispersing from neighbouring man-made habitats while in Madeira a large number of true rare endemic species can still be found in the native laurel forest. Further, our comparative analysis shows striking differences in species richness and composition that are due to the geographical and geological particularities of the two islands, but also seem to reflect the differences in the severity of human-mediated impacts between them. The high proportion of introduced species, the virtual absence of rare native species and the finding that the SADs and OFDs of introduced species match the pattern of native species in Terceira suggest the role of man as an important driver of species diversity in oceanic islands and add evidence for an extensive and severe human-induced species loss in the native forests of Terceira.
  • Mammola, Stefano; Aharon, Shlomi; Seifan, Merav; Lubin, Yael; Gavish-Regev, Efrat (2019)
    Caves are excellent model systems to study the effects of abiotic factors on species distributions due to their selective conditions. Different ecological factors have been shown to affect species distribution depending on the scale of analysis, whether regional or local. The interplay between local and regional factors in explaining the spatial distribution of cave-dwelling organisms is poorly understood. Using the troglophilic subterranean spider Artema nephilit (Araneae: Pholcidae) as a model organism, we investigated whether similar environmental predictors drive the species distribution at these two spatial scales. At the local scale, we monitored the abundance of the spiders and measured relevant environmental features in 33 caves along the Jordan Rift Valley. We then extended the analysis to a regional scale, investigating the drivers of the distribution using species distribution models. We found that similar ecological factors determined the distribution at both local and regional scales for A. nephilit. At a local scale, the species was found to preferentially occupy the outermost, illuminated, and warmer sectors of caves. Similarly, mean annual temperature, annual temperature range, and solar radiation were the most important drivers of its regional distribution. By investigating these two spatial scales simultaneously, we showed that it was possible to achieve an in-depth understanding of the environmental conditions that governs subterranean species distribution.
  • Perez-Lachaud, Gabriela; Jahyny, Benoit J. B.; Ståhls, Gunilla; Rotheray, Graham; Delabie, Jacques H. C.; Lachaud, Jean-Paul (2017)
    The myrmecophile larva of the dipteran taxon Nothomicrodon Wheeler is rediscovered, almost a century after its original description and unique report. The systematic position of this dipteran has remained enigmatic due to the absence of reared imagos to confirm indentity. We also failed to rear imagos, but we scrutinized entire nests of the Brazilian arboreal dolichoderine ant Azteca chartifex which, combined with morphological and molecular studies, enabled us to establish beyond doubt that Nothomicrodon belongs to the Phoridae (Insecta: Diptera), not the Syrphidae where it was first placed, and that the species we studied is an endoparasitoid of the larvae of A. chartifex, exclusively attacking sexual female (gyne) larvae. Northomicrodon parasitism can exert high fitness costs to a host colony. Our discovery adds one more case to the growing number of phorid taxa known to parasitize ant larvae and suggests that many others remain to be discovered. Our findings and literature review confirm that the Phoridae is the only taxon known that parasitizes both adults and the immature stages of different castes of ants, thus threatening ants on all fronts.
  • Heino, Jani; Melo, Adriano S.; Jyrkänkallio-Mikkola, Jenny; Petsch, Danielle Katharine; Saito, Victor Satoru; Tolonen, Kimmo T.; Bini, Luis Mauricio; Landeiro, Victor Lemes; Freire Silva, Thiago Sanna; Pajunen, Virpi; Soininen, Janne; Siqueira, Tadeu (2018)
    Aim: Biological diversity typically varies between climatically different regions, and regions closer to the equator often support higher numbers of taxa than those closer to the poles. However, these trends have been assessed for a few organism groups, and the existing studies have rarely been based on extensive identical surveys in different climatic regions. Location: We conducted standardized surveys of wadeable streams in a boreal (western Finland) and a subtropical (south-eastern Brazil) region, sampling insects identically from 100 streams in each region and measuring the same environmental variables in both regions. Taxon: Aquatic insects. Methods: Comparisons were made at the scales of local stream sites, drainage basins and entire regions. We standardized the spatial extent of the study areas by resampling regional richness based on subsets of sites with similar extents. We examined differences in genus richness and assemblage abundance patterns between the regions using graphical and statistical modelling approaches. Results: We found that while genus accumulation and rank-abundance curves were relatively similar at the regional scale between Finland and Brazil, regional genus richness was higher in the latter but regional abundance much higher in the former region. These regional patterns for richness and abundance were reproduced by basin and local genus richness that were higher in Brazil than in Finland, and assemblage abundance that was much higher in Finland than in Brazil. The magnitude of the difference in genus richness between Brazil and Finland tended to increase from local through basin to regional scales. Main conclusions: Our findings suggest that factors related to evolutionary diversification might explain differences in genus richness between these two climatically different regions, whereas higher nutrient concentrations of stream waters might explain the higher abundance of insects in Finland than in Brazil.