Browsing by Subject "BETA-CELL FUNCTION"

Sort by: Order: Results:

Now showing items 1-13 of 13
  • Matthews, David R.; Paldanius, Päivi M.; Stumvoll, Michael; Han, Jackie; Bader, Giovanni; Chiang, YannTong; Proot, Pieter; Del Prato, Stefano (2019)
    Aims To ensure the integrity of the planned analyses and maximize the clinical utility of the VERIFY study results by describing the detailed concepts behind its statistical analysis plan (SAP) before completion of data collection and study database lock. The SAP will be adhered to for the final primary data analysis of the VERIFY trial. Materials and Methods Vildagliptin efficacy in combination with metformin for early treatment of T2DM (VERIFY) is an ongoing, multicentre, randomized controlled trial aiming to demonstrate the clinical benefits of glycaemic durability and glucose control achieved with an early combination therapy in newly-diagnosed type 2 diabetes (T2DM) patients. Results The SAP was initially designed at the study protocol conception phase and later modified, as reported here, in collaboration between the steering committee members, statisticians, and the VERIFY study leadership team. All authors were blinded to treatment allocation. An independent statistician has additionally retrieved and presented unblinded data to the independent data safety monitoring committee. An overview of the trial design with a focus on describing the fine-tuning of the analysis plan for the primary efficacy endpoint, risk of initial treatment failure, and secondary, exploratory and pre-specified subgroup analyses is provided here. Conclusion According to optimal trial practice, the details of the statistical analysis and data-handling plan prior to locking the database are reported here. The SAP accords with high-quality standards of internal validity to minimize analysis bias and will enhance the utility of the reported results for improved outcomes in the management of T2DM.
  • Porksen, Sven; Laborie, Lene Bjerke; Nielsen, Lotte; Andersen, Marie Louise Max; Sandal, Tone; de Wet, Heidi; Schwarcz, Erik; Aman, Jan; Swift, Peter; Kocova, Mirjana; Schoenle, Eugen J.; de Beaufort, Carine; Hougaard, Philip; Ashcroft, Frances; Molven, Anders; Knip, Mikael; Mortensen, Henrik B.; Hansen, Lars; Njolstad, Pal R.; Hvidore Study Grp Childhood Diabet (2010)
  • Paldanius, Päivi Maria (2020)
    Type 2 diabetes mellitus (T2DM) is a complex and progressive chronic disease characterised by elevating hyperglycaemia and as-sociated need to gradually intensify therapy in order to achieve and maintain glycaemic control. Treating hyperglycaemia with se-quential therapy is proposed to allow holistic assessment of the efficacy and risk-to-benefit ratio of each added component. How-ever, there is an array of evidence supporting the scientific rationale for using synergistic, earlier, modern drug combinations to achieve glycaemic goals, delay the deterioration of glycaemic control, and, therefore, potentially preserve or slow down the declin-ing β-cell function. Additionally, implementation of early combination(s) may lead to opportunities to combat clinical inertia and other hurdles to optimised disease management outcomes. This review aims to discuss the latest empirical evidence for long-term clinical benefits of this novel strategy of early combination in people with newly diagnosed T2DM versus the current widely-im-plemented treatment paradigm, which focuses on control of hyperglycaemia using lifestyle interventions followed by sequentially intensified (mostly metformin-based) monotherapy. The recent reported Vildagliptin Efficacy in combination with metfoRmin For earlY treatment of T2DM (VERIFY) study results have provided significant new evidence confirming long-term glycaemic durability and tolerability of a specific early combination in the management of newly diagnosed, treatment-naïve patients world-wide. These results have also contributed to changes in clinical treatment guidelines and standards of care while clinical imple-mentation and individualised treatment decisions based on VERIFY results might face barriers beyond the existing scientific evi-dence.
  • Tuomi, Tiinamaija; Nagorny, Cecilia L. F.; Singh, Pratibha; Bennet, Hedvig; Yu, Qian; Alenkvist, Ida; Isomaa, Bo; Ostman, Bjarne; Soderstrom, Johan; Pesonen, Anu-Katriina; Martikainen, Silja; Räikkönen, Katri; Forsen, Tom; Hakaste, Liisa; Almgren, Peter; Storm, Petter; Asplund, Olof; Shcherbina, Liliya; Fex, Malin; Fadista, Joao; Tengholm, Anders; Wierup, Nils; Groop, Leif; Mulder, Hindrik (2016)
    Type 2 diabetes (T2D) is a global pandemic. Genome-wide association studies (GWASs) have identified >100 genetic variants associated with the disease, including a common variant in the melatonin receptor 1 b gene (MTNR1B). Here, we demonstrate increased MTNR1B expression in human islets from risk G-allele carriers, which likely leads to a reduction in insulin release, increasing T2D risk. Accordingly, in insulin-secreting cells, melatonin reduced cAMP levels, and MTNR1B overexpression exaggerated the inhibition of insulin release exerted by melatonin. Conversely, mice with a disruption of the receptor secreted more insulin. Melatonin treatment in a human recall-by-genotype study reduced insulin secretion and raised glucose levels more extensively in risk G-allele carriers. Thus, our data support a model where enhanced melatonin signaling in islets reduces insulin secretion, leading to hyperglycemia and greater future risk of T2D. The findings also imply that melatonin physiologically serves to inhibit nocturnal insulin release.
  • Koskinen, Maarit K.; Mikk, Mari-Liis; Laine, Antti-Pekka; Lempainen, Johanna; Löyttyniemi, Eliisa; Vähäsalo, Paula; Hekkala, Anne; Härkönen, Taina; Kiviniemi, Minna; Simell, Olli; Knip, Mikael; Veijola, Riitta; Ilonen, Jorma; Toppari, Jorma (2020)
    A declining first-phase insulin response (FPIR) is associated with positivity for multiple islet autoantibodies, irrespective of class II HLA DR-DQ genotype. We examined the associations of FPIR with genetic variants outside the HLA DR-DQ region in the Finnish Type 1 Diabetes Prediction and Prevention (DIPP) study in children with and without multiple autoantibodies. Association between FPIR and class I alleles A*24 and B*39 and eight single nucleotide polymorphisms outside the HLA region were analyzed in 438 children who had one or more FPIR results available after seroconversion. Hierarchical linear mixed models were used to analyze repeated measurements of FPIR. In children with multiple autoantibodies, the change in FPIR over time was significantly different between those with various PTPN2 (rs45450798), FUT2 (rs601338), CTSH (rs3825932), and IKZF4 (rs1701704) genotypes in at least one of the models. In general, children carrying susceptibility alleles for type 1 diabetes experienced a more rapid decline in insulin secretion compared with children without susceptibility alleles. The presence of the class I HLA A*24 allele was also associated with a steeper decline of FPIR over time in children with multiple autoantibodies. Certain genetic variants outside the class II HLA region may have a significant impact on the longitudinal pattern of FPIR.
  • Buzzetti, Raffaella; Tuomi, Tiinamaija; Mauricio, Didac; Pietropaolo, Massimo; Zhou, Zhiguang; Pozzilli, Paolo; Leslie, Richard David (2020)
    A substantial proportion of patients with adult-onset diabetes share features of both type 1 diabetes (T1D) and type 2 diabetes (T2D). These individuals, at diagnosis, clinically resemble T2D patients by not requiring insulin treatment, yet they have immunogenetic markers associated with T1D. Such a slowly evolving form of autoimmune diabetes, described as latent autoimmune diabetes of adults (LADA), accounts for 2-12% of all patients with adult-onset diabetes, though they show considerable variability according to their demographics and mode of ascertainment. While therapeutic strategies aim for metabolic control and preservation of residual insulin secretory capacity, endotype heterogeneity within LADA implies a personalized approach to treatment. Faced with a paucity of large-scale clinical trials in LADA, an expert panel reviewed data and delineated one therapeutic approach. Building on the 2020 American Diabetes Association (ADA)/European Association for the Study of Diabetes (EASD) consensus for T2D and heterogeneity within autoimmune diabetes, we propose "deviations" for LADA from those guidelines. Within LADA, C-peptide values, proxy for beta-cell function, drive therapeutic decisions. Three broad categories of random C-peptide levels were introduced by the panel:1) C-peptide levels 2) C-peptide values >= 0.3 and 0.7 nmol/L: suggests a modified ADA/EASD algorithm as for T2D but allowing for the potentially progressive nature of LADA by monitoring C-peptide to adjust treatment. The panel concluded by advising general screening for LADA in newly diagnosed non-insulin-requiring diabetes and, importantly, that large randomized clinical trials are warranted.
  • Kivimaki, Mika; Vahtera, Jussi; Tabak, Adam G.; Halonen, Jaana I.; Vineis, Paolo; Pentti, Jaana; Pahkala, Katja; Rovio, Suvi; Viikari, Jorma; Kahonen, Mika; Juonala, Markus; Ferrie, Jane E.; Stringhini, Silvia; Raitakari, Olli T. (2018)
    Background Neighbourhood socioeconomic disadvantage has been linked to increased diabetes risk, but little is known about differences in risk factors in childhood and adulthood in those with high and low neighbourhood socioeconomic disadvantage, or about the association between long-term neighbourhood socioeconomic disadvantage and incidence of diabetes in adulthood. We used data from the prospective, population-based Young Finns Study to address these questions. Methods We did a nationwide population-based cohort study in Finland using data from The Young Finns Study, which included 3467 participants aged 6-18 years followed up for over 30 years via eight repeated biomedical examinations and linkage to electronic health records. Participants were also linked to national grid data on neighbourhood disadvantage via their residential address from age 6-48 years. We used these data to examine differences in ten risk factors (dietary habits, physical activity, daily smoking, body-mass index, systolic blood pressure, fasting HDL cholesterol, fasting triglycerides, fasting plasma glucose, fasting serum insulin, and homoeostasis model assessment insulin sensitivity) from childhood (6-21 years) to adulthood (22-48 years) among individuals with high (>= 0.5 SD above the national mean) and low (0.5 SD below the national mean) neighbourhood socioeconomic disadvantage, and the association of cumulative neighbourhood socioeconomic disadvantage with six cardiometabolic risk factors (obesity, high waist circumference, fatty liver, hypertension, carotid plaque, and left ventricle mass index) and diabetes by middle age (22-48 years). We used logistic and linear regression analyses to assess the effects of neighbourhood disadvantage on cardiometabolic and diabetes risk, controlling for potential confounders (age, sex, and individual socioeconomic disadvantage). Findings We included data for 3002 individuals with risk factor assessment in childhood and adulthood. Of whom, 2048 underwent a clinical examination during the last follow-up at age 33-48 years. Differences in risk factors by neighbourhood socioeconomic disadvantage at the beginning of follow-up were small, but large differences emerged over the follow-up. High neighbourhood socioeconomic disadvantage was characterised by decreased fruit and vegetable intake as early as age 6 years, decreased physical activity, and increased prevalence of daily smoking from adolescence (12 years) onwards, and decreased homoeostasis model assessment insulin sensitivity and increased fasting glucose and insulin concentration from early adulthood (27 years; all p Interpretation Living in socioeconomically disadvantaged areas can shape health in childhood and adulthood. Neighbourhood socioeconomic disadvantage is associated with differences in health risks across the life course, including detrimental lifestyle factors from childhood and adolescence onwards and worse glucose metabolism from early adulthood. By middle age, cumulative neighbourhood socioeconomic disadvantage is associated with increased cardiometabolic risk factors and increased incidence of diabetes. Copyright (C) The Author(s). Published by Elsevier Ltd.
  • Wilhelm-Benartzi, Charlotte S.; Miller, Sarah E.; Bruggraber, Sylvaine; Picton, Diane; Wilson, Mark; Gatley, Katrina; Chhabra, Anita; Marcovecchio, M. Loredana; Hendriks, A. Emile J.; Morobe, Hilde; Chmura, Piotr Jaroslaw; Bond, Simon; Aschemeier-Fuchs, Barbel; Knip, Mikael; Tree, Timothy; Overbergh, Lut; Pall, Jaivier; Arnaud, Olivier; Haller, Michael J.; Nitsche, Almut; Schulte, Anke M.; Mathieu, Chantal; Mander, Adrian; Dunger, David (2021)
    Introduction Type 1 diabetes (T1D) is a chronic autoimmune disease, characterised by progressive destruction of the insulin-producing beta cells of the pancreas. One immunosuppressive agent that has recently shown promise in the treatment of new-onset T1D subjects aged 12-45 years is antithymocyte globulin (ATG), Thymoglobuline, encouraging further exploration in lower age groups. Methods and analysis Minimal effective low dose (MELD)-ATG is a phase 2, multicentre, randomised, double-blind, placebo-controlled, multiarm parallel-group trial in participants 5-25 years diagnosed with T1D within 3-9 weeks of planned treatment day 1. A total of 114 participants will be recruited sequentially into seven different cohorts with the first cohort of 30 participants being randomised to placebo, 2.5 mg/kg, 1.5 mg/kg, 0.5 mg/kg and 0.1 mg/kg ATG total dose in a 1:1:1:1:1 allocation ratio. The next six cohorts of 12-15 participants will be randomised to placebo, 2.5 mg/kg, and one or two selected middle ATG total doses in a 1:1:1:1 or 1:1:1 allocation ratio, as dependent on the number of middle doses, given intravenously over two consecutive days. The primary objective will be to determine the changes in stimulated C-peptide response over the first 2 hours of a mixed meal tolerance test at 12 months for 2.5 mg/kg ATG arm vs the placebo. Conditional on finding a significant difference at 2.5 mg/kg, a minimally effective dose will be sought. Secondary objectives include the determination of the effects of a particular ATG treatment dose on (1) stimulated C-peptide, (2) glycated haemoglobin, (3) daily insulin dose, (4) time in range by intermittent continuous glucose monitoring measures, (5) fasting and stimulated dry blood spot (DBS) C-peptide measurements. Ethics and dissemination MELD-ATG received first regulatory and ethical approvals in Belgium in September 2020 and from the German and UK regulators as of February 2021. The publication policy is set in the INNODIA (An innovative approach towards understanding and arresting Type 1 diabetes consortium) grant agreement (
  • Wang, Hong; Kuusela, Sara; Rinnankoski-Tuikka, Rita; Dumont, Vincent; Bouslama, Rim; Ramadan, Usama Abo; Waaler, Jo; Linden, Anni-Maija; Chi, Nai-Wen; Krauss, Stefan; Pirinen, Eija; Lehtonen, Sanna (2020)
    Objective Human TNKS, encoding tankyrase 1 (TNKS1), localizes to a susceptibility locus for obesity and type 2 diabetes mellitus (T2DM). Here, we addressed the therapeutic potential of G007-LK, a TNKS-specific inhibitor, for obesity and T2DM. Methods We administered G007-LK to diabetic db/db mice and measured the impact on body weight, abdominal adiposity, and serum metabolites. Muscle, liver, and white adipose tissues were analyzed by quantitative RT-PCR and western blotting to determine TNKS inhibition, lipolysis, beiging, adiponectin level, mitochondrial oxidative metabolism and mass, and gluconeogenesis. Protein interaction and PARylation analyses were carried out by immunoprecipitation, pull-down and in situ proximity ligation assays. Results TNKS inhibition reduced body weight gain, abdominal fat content, serum cholesterol levels, steatosis, and proteins associated with lipolysis in diabetic db/db mice. We discovered that TNKS associates with PGC-1 alpha and that TNKS inhibition attenuates PARylation of PGC-1 alpha, contributing to increased PGC-1 alpha level in WAT and muscle in db/db mice. PGC-1 alpha upregulation apparently modulated transcriptional reprogramming to increase mitochondrial mass and fatty acid oxidative metabolism in muscle, beiging of WAT, and raised circulating adiponectin level in db/db mice. This was in sharp contrast to the liver, where TNKS inhibition in db/db mice had no effect on PGC-1 alpha expression, lipid metabolism, or gluconeogenesis. Conclusion Our study unravels a novel molecular mechanism whereby pharmacological inhibition of TNKS in obesity and diabetes enhances oxidative metabolism and ameliorates lipid disorder. This happens via tissue-specific PGC-1 alpha-driven transcriptional reprogramming in muscle and WAT, without affecting liver. This highlights inhibition of TNKS as a potential pharmacotherapy for obesity and T2DM.
  • Haljas, Kadri; Hakaste, Liisa; Lahti, Jari; Isomaa, Bo; Groop, Leif; Tuomi, Tiinamaija; Räikkönen, Katri (2019)
    Background: Seasonal variation in glucose metabolism might be driven by changes in daylight. Melatonin entrains circadian regulation and is directly associated with daylight. The relationship between melatonin receptor 1B gene variants with glycemic traits and type 2 diabetes is well established. We studied if daylight length was associated with glycemic traits and if it modified the relationship between melatonin receptor 1B gene rs10830963 variant and glycemic traits. Materials: A population-based sample of 3422 18-78-year-old individuals without diabetes underwent an oral glucose tolerance test twice, an average 6.8 years (SD = 0.9) apart and were genotyped for rs10830963. Daylight data was obtained from the Finnish Meteorological Institute. Results: Cross-sectionally, more daylight was associated with lower fasting glucose, but worse insulin sensitivity and secretion at follow-up. Longitudinally, individuals studied on lighter days at follow-up than at baseline showed higher glucose values during the oral glucose tolerance test and lower Corrected Insulin Response at follow-up. GG genotype carriers in the rs10830963 became more insulin resistant during follow-up if daylight length was shorter at follow-up than at baseline. Conclusions: Our study shows that individual glycemic profiles may vary according to daylight, MTNR1B genotype and their interaction. Future studies may consider taking daylight length into account.Key messages In Western Finland, the amount daylight follows an extensive annual variation ranging from 4 h 44 min to 20 h 17 min, making it ideal to study the associations between daylight and glycemic traits. Moreover, this allows researchers to explore if the relationship between the melatonin receptor 1B gene rs10830963 variant and glycemic traits is modified by the amount of daylight both cross-sectionally and longitudinally. This study shows that individuals, who participated in the study on lighter days at the follow-up than at the baseline, displayed to a greater extent worse glycemic profiles across the follow-up. Novel findings from the current study show that in the longitudinal analyses, each addition of the minor G allele of the melatonin receptor 1B gene rs10830963 was associated with worsening of fasting glucose values and insulin secretion across the 6.8-year follow-up. Importantly, this study shows that in those with the rs10830963 GG genotype, insulin sensitivity deteriorated the most significantly across the 6.8-year follow-up if the daylight length on the oral glucose tolerance testing date at the follow-up was shorter than at the baseline. Taken together, the current findings suggest that the amount of daylight may affect glycemic traits, especially fasting glucose and insulin secretion even though the effect size is small. The association can very according to the rs10830963 risk variant. Further research is needed to elucidate the mechanisms behind these associations.
  • Miao, Zong; Alvarez, Marcus; Ko, Arthur; Bhagat, Yash; Rahmani, Elior; Jew, Brandon; Heinonen, Sini; Munoz-Hernandez, Linda Liliana; Herrera-Hernandez, Miguel; Aguilar-Salinas, Carlos; Tusie-Luna, Teresa; Mohlke, Karen L.; Laakso, Markku; Pietiläinen, Kirsi H.; Halperin, Eran; Pajukanta, Päivi (2020)
    Reverse causality has made it difficult to establish the causal directions between obesity and prediabetes and obesity and insulin resistance. To disentangle whether obesity causally drives prediabetes and insulin resistance already in non-diabetic individuals, we utilized the UK Biobank and METSIM cohort to perform a Mendelian randomization (MR) analyses in the non-diabetic individuals. Our results suggest that both prediabetes and systemic insulin resistance are caused by obesity (p = 1.2x10(-3)and p = 3.1x10(-24)). As obesity reflects the amount of body fat, we next studied how adipose tissue affects insulin resistance. We performed both bulk RNA-sequencing and single nucleus RNA sequencing on frozen human subcutaneous adipose biopsies to assess adipose cell-type heterogeneity and mitochondrial (MT) gene expression in insulin resistance. We discovered that the adipose MT gene expression and body fat percent are both independently associated with insulin resistance (p Author summary Obesity is a global health epidemic predisposing to type 2 diabetes (T2D) and other cardiometabolic disorders. Previous studies have shown that obesity has a causal effect on T2D; however, it remains unknown whether obesity causes prediabetes and insulin resistance already in non-diabetic individuals. By utilizing almost half a million individuals from the UK Biobank and the Finnish METSIM cohort, we identified a significant causal effect of obesity on prediabetes and insulin resistance among the non-diabetic individuals. Next, we investigated the role of subcutaneous adipose tissue in these obesogenic effects. We discovered that the adipose mitochondrial gene expression and body fat percent are independently associated with insulin resistance after adjusting for the tissue heterogeneity. For the latter, we estimated the adipose cell type proportions by utilizing single-nucleus RNA sequencing of frozen adipose tissue biopsies. Moreover, we established a prediction model to estimate insulin resistance using body fat percent and adipose RNA-sequencing data, which enlightens the importance of adipose tissue in insulin resistance and provides a helpful tool to impute the insulin resistance for existing adipose RNA-sequencing cohorts. Overall, we discover the potential causal effect of obesity on prediabetes and insulin resistance and the key role of adipose tissue in insulin resistance.
  • Raben, Anne; Vestentoft, Pia Siig; Brand-Miller, Jennie; Jalo, Elli; Drummen, Mathjis; Simpson, Liz; Martinez, J. Alfredo; Handjieva-Darlenska, Teodora; Stratton, Gareth; Huttunen-Lenz, Maija; Lam, Tony; Sundvall, Jouko; Muirhead, Roslyn; Poppitt, Sally; Ritz, Christian; Pietiläinen, Kirsi H.; Westerterp-Plantenga, Margriet; Taylor, Moira A.; Navas-Carretero, Santiago; Handjiev, Svetoslav; McNarry, Melitta A.; Hansen, Sylvia; Råman, Laura; Brodie, Shannon; Silvestre, Marta P.; Adam, Tanja C.; Macdonald, Ian A.; San-Cristobal, Rodrigo; Boyadjieva, Nadka; Mackintosh, Kelly A.; Schlicht, Wolfgang; Liu, Amy; Larsen, Thomas M.; Fogelholm, Mikael (2021)
    Aim To compare the impact of two long-term weight-maintenance diets, a high protein (HP) and low glycaemic index (GI) diet versus a moderate protein (MP) and moderate GI diet, combined with either high intensity (HI) or moderate intensity physical activity (PA), on the incidence of type 2 diabetes (T2D) after rapid weight loss. Materials and Methods A 3-year multicentre randomized trial in eight countries using a 2 x 2 diet-by-PA factorial design was conducted. Eight-week weight reduction was followed by a 3-year randomized weight-maintenance phase. In total, 2326 adults (age 25-70 years, body mass index >= 25 kg/m(2)) with prediabetes were enrolled. The primary endpoint was 3-year incidence of T2D analysed by diet treatment. Secondary outcomes included glucose, insulin, HbA1c and body weight. Results The total number of T2D cases was 62 and the cumulative incidence rate was 3.1%, with no significant differences between the two diets, PA or their combination. T2D incidence was similar across intervention centres, irrespective of attrition. Significantly fewer participants achieved normoglycaemia in the HP compared with the MP group (P <.0001). At 3 years, normoglycaemia was lowest in HP-HI (11.9%) compared with the other three groups (20.0%-21.0%, P <.05). There were no group differences in body weight change (-11% after 8-week weight reduction; -5% after 3-year weight maintenance) or in other secondary outcomes. Conclusions Three-year incidence of T2D was much lower than predicted and did not differ between diets, PA or their combination. Maintaining the target intakes of protein and GI over 3 years was difficult, but the overall protocol combining weight loss, healthy eating and PA was successful in markedly reducing the risk of T2D. This is an important clinically relevant outcome.
  • Paldanius, Paivi M.; Ivaska, Kaisa K.; Hovi, Petteri; Andersson, Sture; Eriksson, Johan G.; Vaananen, Kalervo; Kajantie, Eero; Mäkitie, Outi (2013)