Browsing by Subject "BETA-DIVERSITY"

Sort by: Order: Results:

Now showing items 1-16 of 16
  • Heino, Jani; Soininen, Janne; Alahuhta, Janne; Lappalainen, Jyrki; Virtanen, Risto (2015)
    Most metacommunity studies have taken a direct mechanistic approach, aiming to model the effects of local and regional processes on local communities within a metacommunity. An alternative approach is to focus on emergent patterns at the metacommunity level through applying the elements of metacommunity structure (EMS; Oikos, 97, 2002, 237) analysis. The EMS approach has very rarely been applied in the context of a comparative analysis of metacommunity types of main microbial, plant, and animal groups. Furthermore, to our knowledge, no study has associated metacommunity types with their potential ecological correlates in the freshwater realm. We assembled data for 45 freshwater metacommunities, incorporating biologically highly disparate organismal groups (i.e., bacteria, algae, macrophytes, invertebrates, and fish). We first examined ecological correlates (e.g., matrix properties, beta diversity, and average characteristics of a metacommunity, including body size, trophic group, ecosystem type, life form, and dispersal mode) of the three elements of metacommunity structure (i.e., coherence, turnover, and boundary clumping). Second, based on those three elements, we determined which metacommunity types prevailed in freshwater systems and which ecological correlates best discriminated among the observed metacommunity types. We found that the three elements of metacommunity structure were not strongly related to the ecological correlates, except that turnover was positively related to beta diversity. We observed six metacommunity types. The most common were Clementsian and quasi-nested metacommunity types, whereas Random, quasi-Clementsian, Gleasonian, and quasi-Gleasonian types were less common. These six metacommunity types were best discriminated by beta diversity and the first axis of metacommunity ecological traits, ranging from metacommunities of producer organisms occurring in streams to those of large predatory organisms occurring in lakes. Our results showed that focusing on the emergent properties of multiple metacommunities provides information additional to that obtained in studies examining variation in local community structure within a metacommunity.
  • Langenheder, Silke; Wang, Jianjun; Karjalainen, Satu Maaria; Laamanen, Tiina M.; Tolonen, Kimmo T.; Vilmi, Annika; Heino, Jani (2017)
    The spatial structure and underlying assembly mechanisms of bacterial communities have been studied widely across aquatic systems, focusing primarily on isolated sites, such as different lakes, ponds and streams. Here, our main aim was to determine the underlying mechanisms for bacterial biofilm assembly within a large, highly connected lake system in Northern Finland using associative methods based on taxonomic and phylogenetic alpha-and beta-diversity and a large number of abiotic and biotic variables. Furthermore, null model approaches were used to quantify the relative importance of different community assembly processes. We found that spatial variation in bacterial communities within the lake was structured by different assembly processes, including stochasticity, species sorting and potentially even dispersal limitation. Species sorting by abiotic environmental conditions explained more of the taxonomic and particularly phylogenetic turnover in community composition compared with that by biotic variables. Finally, we observed clear differences in alpha diversity (species richness and phylogenetic diversity), which were to a stronger extent determined by abiotic compared with biotic factors, but also by dispersal effects. In summary, our study shows that the biodiversity of bacterial biofilm communities within a lake ecosystem is driven by within-habitat gradients in abiotic conditions and by stochastic and deterministic dispersal processes.
  • Picazo, Felix; Vilmi, Annika; Aalto, Juha; Soininen, Janne; Casamayor, Emilio O.; Liu, Yongqin; Wu, Qinglong; Ren, Lijuan; Zhou, Jizhong; Shen, Ji; Wang, Jianjun (2020)
    Background Understanding the large-scale patterns of microbial functional diversity is essential for anticipating climate change impacts on ecosystems worldwide. However, studies of functional biogeography remain scarce for microorganisms, especially in freshwater ecosystems. Here we study 15,289 functional genes of stream biofilm microbes along three elevational gradients in Norway, Spain and China. Results We find that alpha diversity declines towards high elevations and assemblage composition shows increasing turnover with greater elevational distances. These elevational patterns are highly consistent across mountains, kingdoms and functional categories and exhibit the strongest trends in China due to its largest environmental gradients. Across mountains, functional gene assemblages differ in alpha diversity and composition between the mountains in Europe and Asia. Climate, such as mean temperature of the warmest quarter or mean precipitation of the coldest quarter, is the best predictor of alpha diversity and assemblage composition at both mountain and continental scales, with local non-climatic predictors gaining more importance at mountain scale. Under future climate, we project substantial variations in alpha diversity and assemblage composition across the Eurasian river network, primarily occurring in northern and central regions, respectively. Conclusions We conclude that climate controls microbial functional gene diversity in streams at large spatial scales; therefore, the underlying ecosystem processes are highly sensitive to climate variations, especially at high latitudes. This biogeographical framework for microbial functional diversity serves as a baseline to anticipate ecosystem responses and biogeochemical feedback to ongoing climate change.
  • Siqueira, Tadeu; Saito, Victor S.; Bini, Luis M.; Melo, Adriano S.; Petsch, Danielle K.; Landeiro, Victor L.; Tolonen, Kimmo T.; Jyrkänkallio-Mikkola, Jenny; Soininen, Janne; Heino, Jani (2020)
    Ecological drift can override the effects of deterministic niche selection on small populations and drive the assembly of some ecological communities. We tested this hypothesis with a unique data set sampled identically in 200 streams in two regions (tropical Brazil and boreal Finland) that differ in macroinvertebrate community size by fivefold. Null models allowed us to estimate the magnitude to which beta-diversity deviates from the expectation under a random assembly process while taking differences in richness and relative abundance into account, i.e., beta-deviation. We found that both abundance- and incidence-based beta-diversity was negatively related to community size only in Brazil. Also, beta-diversity of small tropical communities was closer to stochastic expectations compared with beta-diversity of large communities. We suggest that ecological drift may drive variation in some small communities by changing the expected outcome of niche selection, increasing the chances of species with low abundance and narrow distribution to occur in some communities. Habitat destruction, overexploitation, pollution, and reductions in connectivity have been reducing the size of biological communities. These environmental pressures might make smaller communities more vulnerable to novel conditions and render community dynamics more unpredictable. Incorporation of community size into ecological models should provide conceptual and applied insights into a better understanding of the processes driving biodiversity.
  • Abrego, Nerea; Garcia-Baquero, Gonzalo; Halme, Panu; Ovaskainen, Otso; Salcedo, Isabel (2014)
  • Lucena-Moya, Paloma; Gascon, Stephanie; Boix, Daniel; Pardo, Isabel; Sala, Jordi; Quintana, Xavier D. (2017)
    The present study compared crustacean assemblages from coastal wetlands between a fragment archipelago and a landmass. The study included four typical crustacean taxonomic groups (i.e. Cladocera, Copepoda, Ostracoda and Malacostraca) from the Balearic Archipelago region as an example of a fragment island (Archipelago') and the Catalonia region as the landmass (Mainland'; Spanish Mediterranean coast). We tested null hypotheses based on the expected similarity between Archipelago and Mainland in terms of crustacean assemblages and biodiversity. Similar relationships of those community attributes with environmental variables were also expected in both regions. The results partially met the null hypotheses. We found that crustacean taxonomic composition varied between Archipelago and Mainland, likely due to peculiar biological and biogeographical processes acting in the Archipelago. The relationship between crustacean assemblages and the environmental variables was mostly similar between Archipelago and Mainland, as expected. Both regions also showed similar patterns of species distribution (i.e. Archipelago and Mainland coastal wetlands were characterised by a few dominant species). This result could be masked by the filter' effect exercised by the harsh conditions of coastal wetlands. Moreover, the total diversity values (gamma biodiversity) in the Archipelago were similar to the values for the Mainland, supporting the hypothesis that fragment islands can be of substantial value for the conservation of global biodiversity.
  • Wetzel, Carlos E.; Bicudo, Denise de C.; Ector, Luc; Lobo, Eduardo A.; Soininen, Janne; Landeiro, Victor L.; Bini, Luis M. (2012)
    Background The regression of similarity against distance unites several ecological phenomena, and thus provides a highly useful approach for illustrating the spatial turnover across sites. Our aim was to test whether the rates of decay in community similarity differ between diatom growth forms suggested to show different dispersal ability. We hypothesized that the diatom group with lower dispersal ability (i.e. periphyton) would show higher distance decay rates than a group with higher dispersal ability (i.e. plankton). Methods/Principal findings Periphyton and phytoplankton samples were gathered at sites distributed over an area of approximately 800 km length in the Negro River, Amazon basin, Brazil, South America (3°08′00″S; 59°54′30″W). Distance decay relationships were then estimated using distance-based regressions, and the coefficients of these regressions were compared among the groups with different dispersal abilities to assess our predictions. We found evidence that different tributaries and reaches of the Negro River harbor different diatom communities. As expected, the rates of distance decay in community similarity were higher for periphyton than for phytoplankton indicating the lower dispersal ability of periphytic taxa. Conclusions/Significance Our study demonstrates that the comparison of distance decay relationships among taxa with similar ecological requirements, but with different growth form and thus dispersal ability provides a sound approach to evaluate the effects of dispersal ability on beta diversity patterns. Our results are also in line with the growing body of evidence indicating that microorganisms exhibit biogeographic patterns. Finally, we underscore that clumbing all microbial taxa into one group may be a flawed approach to test whether microbes exhibit biogeographic patterns.
  • Gavioli, Anna; Milardi, Marco; Castaldelli, Giuseppe; Fano, Elisa Anna; Soininen, Janne (2019)
    Aim Exotic species are a major threat to biodiversity and have modified native communities worldwide. Invasion processes have been extensively studied, but studies on species richness and beta diversity patterns of exotic and native species are rare. We investigate such patterns among exotic and native fish communities in upland and lowland rivers to explore their relationship with environmental drivers. Location Northern Italy. Methods Exotic and native fish beta diversity patterns were investigated separately in lowland and upland sites using Local Contribution to Beta Diversity (LCBD) and Species Contribution to Beta Diversity (SCBD) analyses. To examine the main environmental variables affecting the LCBD, a Boosted Regression Trees (BRT) method was used. Community dispersion among and within stream orders was investigated with the PERMDISP test. Results In lowland sites, exotic species richness was higher than native species richness, especially in large rivers and drainage canals. An opposite trend was found in upland sites, where native species richness was higher than exotic species richness, especially in large rivers. No clear LCBD patterns were found along stream orders in the lowland, whereas higher stream orders in the upland showed the highest LCBD. Its patterns in upland and lowland sites were related to a number of factors, such as total suspended solids and total phosphorus. Community dispersion among stream orders did not show a relationship with environmental heterogeneity. SCBD values were positively correlated with species occupancy in the study area, and native species showed higher SCBD values than exotic species only in the uplands. Main conclusions Large rivers in the uplands are important in maintaining native fish diversity and should be protected against invasive fish. In contrast, most lowland rivers have suffered from biological homogenization. Some rare native species can show low contribution to beta diversity, but still need conservation actions due to their risk of local extinction.
  • Teittinen, Anette; Virta, Leena (2021)
    Biodiversity has traditionally been quantified using taxonomic information but the importance of also considering its functional characteristics has recently gained an increasing attention among microorganisms. However, studies exploring multiple aspects of taxonomic and functional diversity and their temporal variations are scarce for diatoms, which is one of the most important microbial groups in aquatic ecosystems. Here, our aim was to examine the taxonomic and functional alpha and beta diversities of diatoms in a coastal rock pool system characterized by a naturally high environmental heterogeneity. We also investigated the temporal differences in the diversity patterns and drivers. The relationship between the species richness and functional dispersion was temporally coherent, such that species-poor communities tended to be functionally clustered. The trend between the species richness and taxonomic uniqueness of community composition was temporally inconsistent, changing from negative to non-significant over time. Conductivity or distance to the sea or both were key determinants of species richness, functional dispersion, and uniqueness of community composition. The increase of community dissimilarity with an increasing environmental distance was stronger for the taxonomic than the functional composition. Our results suggest that even minor decreases in the species richness may result in a lowered functional diversity and decreased ecosystem functioning. Species-poor ecosystems may, however, have unique species compositions and high contributions to regional biodiversity. Despite changing the species compositions along the environmental gradients, communities may remain to have a high functional similarity and robustness in the face of environmental changes. Our results highlight the advantage of considering multiple biodiversity metrics and incorporating a temporal component for a deeper understanding of the effects of environmental changes on microbial biodiversity.
  • Teittinen, Anette; Virta, Leena; Li, Mingjia; Wang, Jianjun (2021)
    Islands provide ideal model systems to examine the factors influencing biodiversity, yet knowledge of microbial biodiversity on islands remains scarce. We collected a dataset from 101 rock pools along a freshwater to brackish water transition on islands of the Baltic Sea and investigated the patterns and drivers of community composition and species richness of diatoms, cyanobacteria and non-cyanobacteria bacteria among islands. We also examined whether environmental heterogeneity increased beta diversity and species richness within islands. Among islands, the patterns in community composition were concordant among the microbial groups, with distinct changes along the freshwater-brackish gradient. The patterns in species richness were context-dependent for each microbial group. In general, richness patterns were most strongly associated with nutrient concentrations or the distances to potential sources of immigrants, whereas no positive relationships between ecosystem size and richness were found. Within islands, environmental heterogeneity was positively correlated with the beta diversity of each microbial group, but not species richness. Our findings provide novel insights into the factors influencing microbial biodiversity. The results suggest that island microbial biodiversity patterns are influenced by species sorting and dispersal-related mechanisms and highlight the importance of environmental heterogeneity for beta diversity.
  • Aarnio, Sonja; Teittinen, Anette; Soininen, Janne (2019)
    Different metacommunity perspectives have been developed to describe the relationship between environmental and spatial factors and their relative roles for local communities. However, only little is known about temporal variation in metacommunities and their underlying drivers. We examined temporal variation in the relative roles of environmental and spatial factors for diatom community composition among brackish-watered rock pools on the Baltic Sea coast over a 3-month period. We used a combination of direct ordination, variation partition, and Mantel tests to investigate the metacommunity patterns. The studied communities housed a mixture of freshwater, brackish, and marine species, with a decreasing share of salinity tolerant species along both temporal and spatial gradients. The community composition was explained by both environmental and spatial variables (especially conductivity and distance from the sea) in each month; the joint effect of these factors was consistently larger than the pure effects of either variable group. Community similarity was related to both environmental and spatial distance between the pools even when the other variable group was controlled for. The relative influence of environmental factors increased with time, accounting for the largest share of the variation in species composition and distance decay of similarity in July. Metacommunity organization in the studied rock pools was probably largely explained by a combination of species sorting and mass effect given the small spatial study scale. The found strong distance decay of community similarity indicates spatially highly heterogeneous diatom communities mainly driven by temporally varying conductivity gradient at the marine-freshwater transition zone.
  • Rodil, Iván F.; Lohrer, Andrew M.; Attard, Karl M.; Hewitt, Judi E.; Thrush, Simon F.; Norkko, Alf (2021)
    Similar to other coastal biogenic habitats (e.g. tidal marshes, kelp forests, mangroves and coral reefs), a key function of seagrass meadows is the enhancement of biodiversity. Variability at multiple spatial scales is a driver of biodiversity, but our understanding of the response of macrofauna communities to variability of seagrass meadows is limited. We examined the macrofauna community structure (abundance and biomass) and diversity patterns (alpha- and beta-diversity) across a seascape gradient of eleven seagrass meadows differing in the number, composition and density of plant species. The variability of the macrobenthic communities was regulated by a combination of sedimentary (mainly for the infauna) and macrophyte (mainly for the epifauna) predictors. We demonstrate that the natural occurrence of drifting algae trapped in the aboveground complexity of the meadows benefits seagrass macrofauna. Seagrass-associated macrofauna showed a clear increase in abundance and alpha-diversity metrics with increasing habitat complexity attributes (i.e. shoot density, plant biomass and canopy height). Furthermore, partitioning of beta-diversity (i.e. the variation of species composition between sites) implied the replacement of some species by others between sites (i.e. spatial turnover) instead of a process of species loss (or gain) from site to site (i.e. nestedness). Therefore, the enhancement of macrofauna diversity across an increasing gradient of seagrass complexity, and the dominance of the turnover component suggest that devoting conservation efforts on many different types of meadows, including the less diverse, should be a priority for coastal habitat-management.
  • Hewitt, Judi E.; Norkko, Joanna; Kauppi, Laura; Villnäs, Anna; Norkko, Alf (2016)
    While beta diversity has been implicated as a key factor in controlling resilience of communities to stressors, lack of long-term data sets has limited the study of temporal dynamics of beta diversity. With a time series at two sites in excess of 40yr, we investigated turnover of both species and functional traits in a system stressed by eutrophication and overfishing and undergoing climate change and invasion. The two sites, although located near to each other, differ in water depth (20 cf. 35m), but both sites have displayed increased abundances of an invasive polychaete since 1990. We tested two hypotheses related to the effect of an invasive species; that taxa richness and turnover would decrease, and trait richness would increase post invasion and that trait turnover would increase between arrival and establishment of the invasive. Generally, we observed different dynamics at the two sites and responses not consistent with our hypotheses. We detected an increase in taxa richness at both sites and an increase in taxa turnover and number of traits at one site only. Trait turnover was higher prior to the invasion, although again only at one site. Disjunctive responses between species and trait turnover occurred, with the invader contributing in a nonrandom fashion to trait turnover. The lack of strong, consistent responses to the arrival and establishment of the invasive, and the decrease in trait turnover, suggests that effects of invasives are not only system- and species-dependent, but also depend on community dynamics of the invaded site, in particular the assembly processes, and historical context.
  • Florencio, Margarita; Lobo, Jorge M.; Cardoso, Pedro; Almeida-Neto, Mario; Borges, Paulo A. V. (2015)
    Human-caused disturbances can lead to the extinction of indigenous (endemic and native) species, while facilitating and increasing the colonisation of exotic species; this increase can, in turn, promote the similarity of species compositions between sites if human-disturbed sites are consistently invaded by a regionally species-poor pool of exotic species. In this study, we analysed the extent to which epigean arthropod assemblages of four islands of the Azorean archipelago are characterised by nestedness according to a habitat-altered gradient. The degree of nestedness represents the extent to which less ubiquitous species occur in subsets of sites occupied by the more widespread species, resulting in an ordered loss/gain of species across environmental or ecological gradients. A predictable loss of species across communities while maintaining others may lead to more similar communities (i.e. lower beta-diversity). In contrast, anti-nestedness occurs when different species tend to occupy distinct sites, thus characterising a replacement of species across such gradients. Our results showed that an increase in exotic species does not promote assemblage homogenisation at the habitat level. On the contrary, exotic species were revealed as habitat specialists that constitute new and well-differentiated assemblages, even increasing the species compositional heterogeneity within human-altered landscapes. Therefore, contrary to expectations, our results show that both indigenous and exotic species established idiosyncratic assemblages within habitats and islands. We suggest that both the historical extinction of indigenous species in disturbed habitats and the habitat-specialised character of some exotic invasions have contributed to the construction of current assemblages.
  • Lowe, Elizabeth C.; Wolff, Jonas O.; Aceves-Aparicio, Alfonso; Birkhofer, Klaus; Branco, Vasco V; Cardoso, Pedro; Chichorro, Filipe; Fukushima, Caroline Sayuri; Goncalves-Sousa, T.; Haddad, Charles; Isaia, Marco; Krehenwinkel, H.; Audisio, Tracy Lynn; Macias Hernandez, Nuria; Malumbres-Olarte, Jagoba; Mammola, Stefano; McLean, Donald James; Michalko, Radek; Nentwig, Wolfgang; Pekar, Stano; Petillon, Julien; Privet, Kaina; Scott, Catherine; Uhl, Gabriele; Urbano Tenorio, Fernando; Wong, Boon Hui; Herbestein, Marie E. (2020)
    A main goal of ecological and evolutionary biology is understanding and predicting interactions between populations and both abiotic and biotic environments, the spatial and temporal variation of these interactions, and the effects on population dynamics and performance. Trait-based approaches can help to model these interactions and generate a comprehensive understanding of ecosystem functioning. A central tool is the collation of databases that include species trait information. Such centralized databases have been set up for a number of organismal groups but is lacking for one of the most important groups of predators in terrestrial ecosystems - spiders. Here we promote the collation of an open spider traits database, integrated into the global Open Traits Network. We explore the current collation of spider data and cover the logistics of setting up a global database, including which traits to include, the source of data, how to input data, database governance, geographic cover, accessibility, quality control and how to make the database sustainable long-term. Finally, we explore the scope of research questions that could be investigated using a global spider traits database.
  • Ovaskainen, Otso; Rybicki, Joel; Abrego, Nerea (2019)
    A key challenge for community ecology is to understand to what extent observational data can be used to infer the underlying community assembly processes. As different processes can lead to similar or even identical patterns, statistical analyses of non-manipulative observational data never yield undisputable causal inference on the underlying processes. Still, most empirical studies in community ecology are based on observational data, and hence understanding under which circumstances such data can shed light on assembly processes is a central concern for community ecologists. We simulated a spatial agent-based model that generates variation in metacommunity dynamics across multiple axes, including the four classic metacommunity paradigms as special cases. We further simulated a virtual ecologist who analysed snapshot data sampled from the simulations using eighteen output metrics derived from beta-diversity and habitat variation indices, variation partitioning and joint species distribution modelling. Our results indicated two main axes of variation in the output metrics. The first axis of variation described whether the landscape has patchy or continuous variation, and thus was essentially independent of the properties of the species community. The second axis of variation related to the level of predictability of the metacommunity. The most predictable communities were niche-based metacommunities inhabiting static landscapes with marked environmental heterogeneity, such as metacommunities following the species sorting paradigm or the mass effects paradigm. The most unpredictable communities were neutral-based metacommunities inhabiting dynamics landscapes with little spatial heterogeneity, such as metacommunities following the neutral or patch sorting paradigms. The output metrics from joint species distribution modelling yielded generally the highest resolution to disentangle among the simulated scenarios. Yet, the different types of statistical approaches utilized in this study carried complementary information, and thus our results suggest that the most comprehensive evaluation of metacommunity structure can be obtained by combining them.