Browsing by Subject "BINDING PROTEIN"

Sort by: Order: Results:

Now showing items 1-7 of 7
  • Graff, Mariaelisa; Scott, Robert A.; Justice, Anne E.; Young, Kristin L.; Feitosa, Mary F.; Barata, Llilda; Winkler, Thomas W.; Chu, Audrey Y.; Mahajan, Anubha; Hadley, David; Xue, Luting; Workalemahu, Tsegaselassie; Heard-Costa, Nancy L.; den Hoed, Marcel; Ahluwalia, Tarunveer S.; Qi, Qibin; Ngwa, Julius S.; Renstrom, Frida; Quaye, Lydia; Eicher, John D.; Hayes, James E.; Cornelis, Marilyn; Kutalik, Zoltan; Lim, Elise; Luan, Jian'an; Huffman, Jennifer E.; Zhang, Weihua; Zhao, Wei; Griffin, Paula J.; Haller, Toomas; Ahmad, Shafqat; Marques-Vidal, Pedro M.; Bien, Stephanie; Yengo, Loic; Teumer, Alexander; Smith, Albert Vernon; Kumari, Meena; Harder, Marie Neergaard; Justesen, Johanne Marie; Kleber, Marcus E.; Hollensted, Mette; Lohman, Kurt; Rivera, Natalia V.; Whitfield, John B.; Kristiansson, Kati; Havulinna, Aki S.; Koistinen, Heikki A.; Perola, Markus; Tuomilehto, Jaakko; Kivimaki, Mika; CHARGE Consortium; EPIC-InterAct Consortium; PAGE Consortium (2017)
    Physical activity (PA) may modify the genetic effects that give rise to increased risk of obesity. To identify adiposity loci whose effects are modified by PA, we performed genome-wide interaction meta-analyses of BMI and BMI-adjusted waist circumference and waist-hip ratio from up to 200,452 adults of European (n = 180,423) or other ancestry (n = 20,029). We standardized PA by categorizing it into a dichotomous variable where, on average, 23% of participants were categorized as inactive and 77% as physically active. While we replicate the interaction with PA for the strongest known obesity-risk locus in the FTO gene, of which the effect is attenuated by similar to 30% in physically active individuals compared to inactive individuals, we do not identify additional loci that are sensitive to PA. In additional genome-wide meta-analyses adjusting for PA and interaction with PA, we identify 11 novel adiposity loci, suggesting that accounting for PA or other environmental factors that contribute to variation in adiposity may facilitate gene discovery.
  • Shi, Yonghong; Posse, Viktor; Zhu, Xuefeng; Hyvärinen, Anne K.; Jacobs, Howard T.; Falkenberg, Maria; Gustafsson, Claes M. (2016)
    During replication of nuclear ribosomal DNA (rDNA), clashes with the transcription apparatus can cause replication fork collapse and genomic instability. To avoid this problem, a replication fork barrier protein is situated downstream of rDNA, there preventing replication in the direction opposite rDNA transcription. A potential candidate for a similar function in mitochondria is the mitochondrial transcription termination factor 1 (MTERF1, also denoted mTERF), which binds to a sequence just downstream of the ribosomal transcription unit. Previous studies have shown that MTERF1 prevents antisense transcription over the ribosomal RNA genes, a process which we here show to be independent of the transcription elongation factor TEFM. Importantly, we now demonstrate that MTERF1 arrests mitochondrial DNA (mtDNA) replication with distinct polarity. The effect is explained by the ability of MTERF1 to act as a directional contrahelicase, blocking mtDNA unwinding by the mitochondrial helicase TWINKLE. This conclusion is also supported by in vivo evidence that MTERF1 stimulates TWINKLE pausing. We conclude that MTERF1 can direct polar replication fork arrest in mammalian mitochondria.
  • Marttila, Minttu; Mubashir, Hanif; Lemola, Elina; Nowak, Kristen J.; Laitila, Jenni; Gronholm, Mikaela; Wallgren-Pettersson, Carina; Pelin, Katarina (2014)
    Background: Nemaline myopathy (NM) is a rare genetic muscle disorder, but one of the most common among the congenital myopathies. NM is caused by mutations in at least nine genes: Nebulin (NEB), alpha-actin (ACTA1), alpha-tropomyosin (TPM3), beta-tropomyosin (TPM2), troponin T (TNNT1), cofilin-2 (CFL2), Kelch repeat and BTB (POZ) domain-containing 13 (KBTBD13), and Kelch-like family members 40 and 41 (KLHL40 and KLHL41). Nebulin is a giant (600 to 900 kDa) filamentous protein constituting part of the skeletal muscle thin filament. Around 90% of the primary structure of nebulin is composed of approximately 35-residue alpha-helical domains, which form super repeats that bind actin with high affinity. Each super repeat has been proposed to harbor one tropomyosin-binding site. Methods: We produced four wild-type (WT) nebulin super repeats (S9, S14, S18, and S22), 283 to 347 amino acids long, and five corresponding repeats with a patient mutation included: three missense mutations (p.Glu2431Lys, p.Ser6366Ile, and p.Thr7382Pro) and two in-frame deletions (p.Arg2478_Asp2512del and p.Val3924_Asn3929del). We performed F-actin and tropomyosin-binding experiments for the nebulin super repeats, using co-sedimentation and GST (glutathione-S-transferase) pull-down assays. We also used the GST pull-down assay to test the affinity of WT nebulin super repeats for WT alpha- and beta-tropomyosin, and for beta-tropomyosin with six patient mutations: p.Lys7del, p. Glu41Lys, p.Lys49del, p.Glu117Lys, p.Glu139del and p.Gln147Pro. Results: WT nebulin was shown to interact with actin and tropomyosin. Both the nebulin super repeats containing the p.Glu2431Lys mutation and nebulin super repeats lacking exon 55 (p.Arg2478_Asp2512del) showed weak affinity for F-actin compared with WT fragments. Super repeats containing the p.Ser6366Ile mutation showed strong affinity for actin. When tested for tropomyosin affinity, super repeats containing the p.Glu2431Lys mutation showed stronger binding than WT proteins to tropomyosin, and the super repeat containing the p.Thr7382Pro mutation showed weaker binding than WT proteins to tropomyosin. Super repeats containing the deletion p. Val3924_Asn3929del showed similar affinity for actin and tropomyosin as that seen with WT super repeats. Of the tropomyosin mutations, only p.Glu41Lys showed weaker affinity for nebulin (super repeat 18). Conclusions: We demonstrate for the first time the existence of direct tropomyosin-nebulin interactions in vitro, and show that nebulin interactions with actin and tropomyosin are altered by disease-causing mutations in nebulin and tropomyosin.
  • Zhong, Wenbin; Xu, Mengyang; Li, Chanjuan; Zhu, Biying; Cao, Xiuye; Li, Dan; Chen, Huanzhao; Hu, Chunxiu; Li, Rong; Luo, Chengwei; Pan, Guoping; Zhang, Wenqiang; Lai, Chaofeng; Wang, Tong; Du, Xin; Chen, Hong; Xu, Guowang; Olkkonen, Vesa M.; Lei, Pingsheng; Xu, Jun; Yan, Daoguang (2019)
    Leukemia stem cells (LSCs) are a rare subpopulation of abnormal hematopoietic stem cells (HSCs) that propagates leukemia and are responsible for the high frequency of relapse in therapies. Detailed insights into LSCs' survival will facilitate the identification of targets for therapeutic approaches. Here, we develop an inhibitor, LYZ-81, which targets ORP4L with high affinity and specificity and selectively eradicates LCSs in vitro and in vivo. ORP4L is expressed in LSCs but not in normal HSCs and is essential for LSC bioenergetics and survival. It extracts PIP2 from the plasma membrane and presents it to PLC beta 3, enabling IP3 generation and subsequentCa(2+)-dependent bioenergetics. LYZ-81 binds ORP4L competitively with PIP2 and blocks PIP2 hydrolysis, resulting in defective Ca2+ signaling. The results provide evidence that LSCs can be eradicated through the inhibition of ORP4L by LYZ-81, which may serve as a starting point of drug development for the elimination of LSCs to eventually cure leukemia.
  • Gonzalez de Cozar, Jose M.; Gerards, Mike; Teeri, Eveliina; George, Jack; Dufour, Eric; Jacobs, Howard T.; Joers, Priit (2019)
    Mitochondrial DNA (mtDNA) replication uses a simple core machinery similar to those of bacterial viruses and plasmids, but its components are challenging to unravel. Here, we found that, as in mammals, the single Drosophila gene for RNase H1 (rnh1) has alternative translational start sites, resulting in two polypeptides, targeted to either mitochondria or the nucleus. RNAi-mediated rnh1 knockdown did not influence growth or viability of S2 cells, but compromised mtDNA integrity and copy number. rnh1 knockdown in intact flies also produced a phenotype of impaired mitochondrial function, characterized by respiratory chain deficiency, locomotor dysfunction, and decreased lifespan. Its overexpression in S2 cells resulted in cell lethality after 5-9 days, attributable to the nuclearly localized isoform. rnh1 knockdown and overexpression produced opposite effects on mtDNA replication intermediates. The most pronounced effects were seen in genome regions beyond the major replication pauses where the replication fork needs to progress through a gene cluster that is transcribed in the opposite direction. RNase H1 deficiency led to an accumulation of replication intermediates in these zones, abundant mtDNA molecules joined by four-way junctions, and species consistent with fork regression from the origin. These findings indicate replication stalling due to the presence of unprocessed RNA/DNA heteroduplexes, potentially leading to the degradation of collapsed forks or to replication restart by a mechanism involving strand invasion. Both mitochondrial RNA and DNA syntheses were affected by rnh1 knockdown, suggesting that RNase H1 also plays a role in integrating or coregulating these processes in Drosophila mitochondria.
  • Stepanenko, Olesya V.; Stepanenko, Olga V.; Kuznetsova, Irina M.; Verkhusha, Vladislav V.; Turoverov, Konstantin K. (2014)
  • Dermadi, Denis; Valo, Satu; Ollila, Saara; Soliymani, Rabah; Sipari, Nina; Pussila, Marjaana; Sarantaus, Laura; Linden, Jere; Baumann, Marc; Nystrom, Minna (2017)
    Western-style diets (WD) high in fat and scarce in fiber and vitamin D increase risks of colorectal cancer. Here, we performed a long-term diet study in mice to follow tumorigenesis and characterize structural and metabolic changes in colon mucosa associated with WD and predisposition to colorectal cancer. WD increased colon tumor numbers, and mucosa proteomic analysis indicated severe deregulation of intracellular bile acid (BA) homeostasis and activation of cell proliferation. WD also in-creased crypt depth and colon cell proliferation. Despite increased luminal BA, colonocytes from WD-fed mice exhibited decreased expression of the BA transporters FABP6, OST beta, and ASBT and decreased concentrations of secondary BA deoxycholic acid and lithocholic acid, indicating reduced activity of the nuclear BA receptor FXR. Overall, our results suggest that WD increases cancer risk by FXR inactivation, leading to BA deregulation and increased colon cell proliferation. (C) 2017 AACR.