Browsing by Subject "BIODEGRADATION"

Sort by: Order: Results:

Now showing items 1-9 of 9
  • Lopez-Echartea, Eglantina; Strejcek, Michal; Mukherjee, Shinjini; Uhlik, Ondrej; Yrjälä, Kim (2020)
    Petroleum hydrocarbons (PHCs) continue to be among the most common pollutants in soil worldwide. Phytoremediation has become a sustainable way of dealing with PHC contamination. We conducted the off-site phytoremediation of PHC-polluted soil from an oil tanker truck accident, where poplars were used for the phytoremediation of the oil-polluted soil in a boreal climate during a seven-year treatment. The succession of bacterial communities over the entire phytoremediation process was monitored using microbial ecological tools relying on high-throughput 16S rRNA gene sequencing. Upon the successful depletion of PHCs from soils, endophytic communities were analyzed in order to assess the complete plant-associated microbiome after the ecological recovery. The rhizosphere-associated soil exhibited different bacterial dynamics than unplanted soil, but both soils had a bacterial community succession through the years, with diversity being negatively correlated with PHC concentration. In the relatively short growing season in North Europe, seasonal variations in environmental conditions were identified that contributed to the dynamics of bacterial communities. Overall, our study proved that phytoremediation using poplar trees can be used to assist in the removal of PHCs from soils in boreal climate conditions and provides new insight into the succession patterns of bacterial communities associated with these plants.
  • Kahkonen, Mika A.; Miettinen, Otto; Hilden, Kristiina S. (2020)
    The impacts of Ho and Li (0, 10, 50, 200 mg/L) were tested towards the growth of four basidiomycetous fungal species, their ability to decolorise synthetic dyes (Reactive Green 19, Reactive Orange 16, Reactive Black 5), and produce oxidative enzymes. All species;Agrocybe dura,Skeletocutis biguttulata,Exidia saccharinaandGalerina paludosa;grew with and without supplemented Ho or Li. The growth ofS. biguttulatawas the most tolerant species towards Ho or Li (200 mg/L), whereas the growth ofG. paludosawas the most sensitive of the studied species to both 200 mg Ho or Li/L. All fungi oxidized ABTS [2,2 '-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid)] forming colour zone on plate tests indicating production of lignin modifying laccase enzyme.A. duraandG. paludosa,formed black MnO(2)zone in Mn(2+)plates, which indicates the production of manganese peroxidase (MnP).A. duraandG. paludosadecolorised Reactive Black 5 indicating the production of versatile peroxide (VP) enzyme. Our study presents two new candidate species able to produce VP.A. durawas capable of decolorising all tested synthetic dyes in the presence of Ho or Li (0-200 mg/L) suggesting that this fungus is a promising species for bioremediation of multi dye-containing wastes.
  • Liu, Xinxin; Hui, Nan; Kontro, Merja H. (2020)
    The triazine herbicide atrazine easily leaches with water through soil layers into groundwater, where it is persistent. Its behavior during short-term transport is poorly understood, and there is no in situ remediation method for it. The aim of this study was to investigate whether water circulation, or circulation combined with bioaugmentation (Pseudomonassp. ADP, or four isolates from atrazine-contaminated sediments) alone or with biostimulation (Na-citrate), could enhance atrazine dissipation in subsurface sediment-water systems. Atrazine concentrations (100 mg L-1) in the liquid phase of sediment slurries and in the circulating water of sediment columns were followed for 10 days. Atrazine was rapidly degraded to 53-64 mg L(-1)in the slurries, and further to 10-18 mg L(-1)in the circulating water, by the inherent microbes of sediments collected from 13.6 m in an atrazine-contaminated aquifer. Bioaugmentation without or with biostimulation had minor effects on atrazine degradation. The microbial number simultaneously increased in the slurries from 1.0 x 10(3)to 0.8-1.0 x 10(8)cfu mL(-1), and in the circulating water from 0.1-1.0 x 10(2)to 0.24-8.8 x 10(4)cfu mL(-1). In sediments without added atrazine, the cultivable microbial numbers remained low at 0.82-8.0 x 10(4)cfu mL(-1)in the slurries, and at 0.1-2.8 x 10(3)cfu mL(-1)in the circulating water. The cultivated microorganisms belonged to the nine generaAcinetobacter,Burkholderia,Methylobacterium,Pseudomonas,Rhodococcus,Sphingomonas,Streptomyces,VariovoraxandWilliamsia; i.e., biodiversity was low. Water flow through the sediments released adsorbed and complex-bound atrazine for microbial degradation, though the residual concentration of 10-64 mg L(-1)was high and could contaminate large groundwater volumes from a point source, e.g., during heavy rain or flooding.
  • Talvenmaki, Harri; Saartama, Niina; Haukka, Anna; Lepikko, Katri; Pajunen, Virpi; Punkari, Milla; Yan, Guoyong; Sinkkonen, Aki; Piepponen, Tuomas; Silvennoinen, Hannu; Romantschuk, Martin (2021)
    A residential lot impacted by spills from a leaking light heating oil tank was treated with a combination of chemical oxidation and bioremediation to avoid technically challenging excavation. The tank left emptied in the ground was used for slow infiltration of the remediation additives to the low permeability, clayey soil. First, hydrogen peroxide and citrate chelate was added for Fenton's reaction-based chemical oxidation, resulting in a ca. 50% reduction from the initial 25,000 mg/kg average oil concentration in the soil below the tank. Part of this was likely achieved through mobilization of oily soil into the tank, which was beneficial in regards to the following biological treatment. By first adding live bacteria in a soil inoculum, and then oxygen and nutrients in different forms, an approximately 90% average reduction was achieved. To further enhance the effect, methyl-beta-cyclodextrin surfactant (CD) was added, resulting finally in a 98% reduction from the initial average level. The applicability of the surfactant was based on laboratory-scale tests demonstrating that CD promoted oil degradation and, unlike pine soap, was not utilized by the bacteria as a carbon source, and thus inhibiting degradation of oils regardless of the positive effect on biological activity. The effect of CD on water solubility for different hydrocarbon fractions was tested to serve as the basis for risk assessment requirements for authorizing the use of the surfactant at the site.
  • Kerminen, Kaisa Aino Maria; Moël, Romain Le; Harju, Anu Vilhelmiina; Kontro, Merja Hannele (2018)
    Pesticides leaching from soil to surface and groundwater are a global threat for drinking water safety, as no cleaning methods occur for groundwater environment. We examined whether peat, compost-peat-sand (CPS) mixture, NH4NO3, NH4NO3 with sodium citrate (Na-citrate), and the surfactant methyl-beta-cyclodextrin additions enhance atrazine, simazine, hexazinone, dichlobenil, and the degradate 2,6-dichlorobenzamide (BAM) dissipations in sediment slurries under aerobic and anaerobic conditions, with sterilized controls. The vadose zone sediment cores were drilled from a depth of 11.3-14.6m in an herbicide-contaminated groundwater area. The peat and CPS enhanced chemical atrazine and simazine dissipation, and the peat enhanced chemical hexazinone dissipation, all oxygen-independently. Dichlobenil dissipated under all conditions, while BAM dissipation was fairly slow and half-lives could not be calculated. The chemical dissipation rates could be associated with the chemical structures and properties of the herbicides, and additive compositions, not with pH. Microbial atrazine degradation was only observed in the Pseudomonas sp. ADP amended slurries, although the sediment slurries were known to contain atrazine-degrading microorganisms. The bioavailability of atrazine in the water phase seemed to be limited, which could be due to complex formation with organic and inorganic colloids. Atrazine degradation by indigenous microbes could not be stimulated by the surfactant methyl-beta-cyclodextrin, or by the additives NH4NO3 and NH4NO3 with Na-citrate, although the nitrogen additives increased microbial growth. (C) 2017 Elsevier B.V. All rights reserved.
  • Liu, Xinxin; Selonen, Ville; Steffen, Kari; Surakka, Mea; Rantalainen, Anna-Lea; Romantschuk, Martin; Sinkkonen, Aki (2019)
    Soil contamination with diesel oil is frequent and methods to improve remediation of diesel oil contaminated soils are urgently needed. The aim of the current study was to assess the potential of meat and bone meal (MBM) as a biostimulation agent to enhance diesel oil degradation in contaminated soils collected from southern Finland. MBM (2 % w/w) increased oil degradation in soils when compared to natural attenuation. The increase was comparable to soils treated with a traditional fertilizer (urea). Soil pH increased rapidly in urea treated soil but remained at the level of natural attenuation in MBM treated soil, suggesting that in large-scale experiments MBM treated soils avoid the usual negative impact of urea on soil pH and ultimately microbial degradation. These results indicate that MBM addition enhances diesel oil degradation, and that MBM speeds up ex situ bioremediation of oil contaminated soils.
  • Graessler, Peter; Meyer, Nele; Peukert, Juergen; Welp, Gerhard; Damerow, Lutz; Lammers, Peter Schulze; Amelung, Wulf (2019)
    Hot vegetable oil can be used for weed control as an alternative to the use of herbicides. We analysed the temporal development of vegetable oil mineralization in soil and tested the role of nutrient supply on oil mineralization. Further, we investigated the effect of oil application on mineralization of native soil organic carbon (SOC), i.e. the priming effect. In a laboratory experiment, three oil dosages (0.1, 1.0 and 3.0ml per 35g soil) were applied to three arable soils and soil respiration was measured hourly. Both a C3-sunflower oil and a C4-corn oil were used in order to differentiate oil-derived CO2 from SOC-derived CO2. The results revealed that after 42days of incubation, 9.6 to 39.7% of the applied oil was mineralized which, however, also primed the mineralization of SOC by a factor of 2.2 to 4.2. The higher the applied oil amount, the lower was the percentage of oil-C mineralization, but the higher was the priming effect. The addition of fertilizer (0.29mgNg(-1) soil and 0.048mgPg(-1) soil) increased oil-C mineralization to 39.9 to 50.9%. We conclude that oil can temporarily accumulate in soil, especially in case of low nutrient supply. As the addition of oil stimulates SOC mineralization, a decrease of native SOC stocks may occur, which needs further quantification in long-term field experiments.
  • Esterhuizen, Maranda; Behman Sani, Shirin; Wang, Lin; Kim, Young Jun; Pflugmacher, Stephan (2021)
    Untreated pharmaceutical pollution and their possibly toxic metabolites, resulting from overloaded wastewater treatment processes, end up in aquatic environments and are hazardous to the ecosystem homeostasis. Biological wastewater remediation could supplement traditional methods and overcome the release of these biologically active compounds in the environment. Mycoremediation is especially promising due to the unspecific nature of fungi to decompose compounds through exoenzymes and the uptake of compounds as nutrients. In the present study, we improved on the previous advances made using the fungus Mucor hiemalis to remediate one of the most commonly occurring pharmaceuticals, acetaminophen (APAP), at higher concentrations. The limitation of nitrogen, adjustment of pH, and comparison to, as well as co-cultivation with the white-rot fungus Phanerochaete chrysosporium, were tested. Nitrogen limitation did not significantly improve the APAP remediation efficiency of M. hiemalis. Maintaining the pH of the media improved the remediation restraint of 24 h previously observed. The APAP remediation efficiency of P. chrysosporium was far superior to that of M. hiemalis, and co-cultivation of the two resulted in a decreased remediation efficiency compared to P. chrysosporium in single.
  • Lappalainen, Mari; Kukkonen, Jussi V. K.; Piirainen, Sirpa; Sarjala, Tytti; Setälä, Heikki; Koivusalo, Harri; Finer, Leena; Lauren, Ari (2013)