Browsing by Subject "BIOGENIC EMISSIONS"

Sort by: Order: Results:

Now showing items 1-16 of 16
  • Dal Maso, M.; Liao, L.; Wildt, J.; Kiendler-Scharr, A.; Kleist, E.; Tillmann, R.; Sipilä, M.; Hakala, J.; Lehtipalo, K.; Ehn, M.; Kerminen, V. -M.; Kulmala, M.; Worsnop, D.; Mentel, T. (2016)
    Aerosol formation from biogenic and anthropogenic precursor trace gases in continental background areas affects climate via altering the amount of available cloud condensation nuclei. Significant uncertainty still exists regarding the agents controlling the formation of aerosol nanoparticles. We have performed experiments in the Julich plant-atmosphere simulation chamber with instrumentation for the detection of sulfuric acid and nanoparticles, and present the first simultaneous chamber observations of nanoparticles, sulfuric acid, and realistic levels and mixtures of biogenic volatile compounds (BVOCs). We present direct laboratory observations of nanoparticle formation from sulfuric acid and realistic BVOC precursor vapour mixtures performed at atmospherically relevant concentration levels. We directly measured particle formation rates separately from particle growth rates. From this, we established that in our experiments, the formation rate was proportional to the product of sulfuric acid and biogenic VOC emission strength. The formation rates were consistent with a mechanism in which nucleating BVOC oxidation products are rapidly formed and activate with sulfuric acid. The growth rate of nanoparticles immediately after birth was best correlated with estimated products resulting from BVOC ozonolysis.
  • Kirkevag, Alf; Grini, Alf; Olivie, Dirk; Seland, Oyvind; Alterskjaer, Kari; Hummel, Matthias; Karset, Inger H. H.; Lewinschal, Anna; Liu, Xiaohong; Makkonen, Risto; Bethke, Ingo; Griesfeller, Jan; Schulz, Michael; Iversen, Trond (2018)
    We document model updates and present and discuss modeling and validation results from a further developed production-tagged aerosol module, OsloAero5.3, for use in Earth system models. The aerosol module has in this study been implemented and applied in CAM5.3-Oslo. This model is based on CAM5.3-CESM1.2 and its own predecessor model version CAM4-Oslo. OsloAero5.3 has improved treatment of emissions, aerosol chemistry, particle life cycle, and aerosol-cloud interactions compared to its predecessor OsloAero4.0 in CAM4-Oslo. The main new features consist of improved aerosol sources; the module now explicitly accounts for aerosol particle nucleation and secondary organic aerosol production, with new emissions schemes also for sea salt, dimethyl sulfide (DMS), and marine primary organics. Mineral dust emissions are updated as well, adopting the formulation of CESM1.2. The improved model representation of aerosol-cloud interactions now resolves heterogeneous ice nucleation based on black carbon (BC) and mineral dust calculated by the model and treats the activation of cloud condensation nuclei (CCN) as in CAM5.3. Compared to OsloAero4.0 in CAM4-Oslo, the black carbon (BC) mass concentrations are less excessive aloft, with a better fit to observations. Near-surface mass concentrations of BC and sea salt aerosols are also less biased, while sulfate and mineral dust are slightly more biased. Although appearing quite similar for CAM5.3-Oslo and CAM4-Oslo, the validation results for organic matter (OM) are inconclusive, since both of the respective versions of OsloAero are equipped with a limited number of OM tracers for the sake of computational efficiency. Any information about the assumed mass ratios of OM to organic carbon (OC) for different types of OM sources is lost in the transport module. Assuming that observed OC concentrations scaled by 1.4 are representative for the modeled OM concentrations, CAM5.3-Oslo with OsloAero5.3 is slightly inferior for the very sparsely available observation data. Comparing clear-sky column-integrated optical properties with data from ground-based remote sensing, we find a negative bias in optical depth globally; however, it is not as strong as in CAM4-Oslo, but has positive biases in some areas typically dominated by mineral dust emissions. Aerosol absorption has a larger negative bias than the optical depth globally. This is reflected in a lower positive bias in areas where mineral dust is the main contributor to absorption. Globally, the low bias in absorption is smaller than in CAM4-Oslo. The Angstrom parameter exhibits small biases both globally and regionally, suggesting that the aerosol particle sizes are reasonably well represented. Cloud-top droplet number concentrations over oceans are generally underestimated compared to satellite retrievals, but seem to be overestimated downwind of major emissions of dust and biomass burning sources. Finally, we find small changes in direct radiative forcing at the top of the atmosphere, while the cloud radiative forcing due to anthropogenic aerosols is now more negative than in CAM4-Oslo, being on the strong side compared to the multi-model estimate in IPCC AR5. Although not all validation results in this study show improvement for the present CAM5.3-Oslo version, the extended and updated aerosol module OsloAero5.3 is more advanced and applicable than its predecessor OsloAero4.0, as it includes new parameterizations that more readily facilitate sensitivity and process studies and use in climate and Earth system model studies in general.
  • Xausa, Filippo; Paasonen, Pauli; Makkonen, Risto; Arshinov, Mikhail; Ding, Aijun; Van Der Gon, Hugo Denier; Kerminen, Veli-Matti; Kulmala, Markku (2018)
    Climate models are important tools that are used for generating climate change projections, in which aerosol-climate interactions are one of the main sources of uncertainties. In order to quantify aerosol-radiation and aerosolcloud interactions, detailed input of anthropogenic aerosol number emissions is necessary. However, the anthropogenic aerosol number emissions are usually converted from the corresponding mass emissions in pre-compiled emission inventories through a very simplistic method depending uniquely on chemical composition, particle size and density, which are defined for a few, very wide main source sectors. In this work, the anthropogenic particle number emissions converted from the AeroCom mass in the ECHAM-HAM climate model were replaced with the recently formulated number emissions from the Greenhouse Gas and Air Pollution Interactions and Synergies (GAINS) model. In the GAINS model the emission number size distributions vary, for example, with respect to the fuel and technology. Special attention was paid to accumulation mode particles (particle diameter d(p) > 100 nm) because of (i) their capability of acting as cloud condensation nuclei (CCN), thus forming cloud droplets and affecting Earth's radiation budget, and (ii) their dominant role in forming the coagulation sink and thus limiting the concentration of sub-100 nm particles. In addition, the estimates of anthropogenic CCN formation, and thus the forcing from aerosol-climate interactions, are expected to be affected. Analysis of global particle number concentrations and size distributions reveals that GAINS implementation increases CCN concentration compared with AeroCom, with regional enhancement factors reaching values as high as 10. A comparison between modeled and observed concentrations shows that the increase in number concentration for accumulation mode particles agrees well with measurements, but it leads to a consistent underestimation of both nucleation mode and Aitken mode (d(p) <100 nm) particle number concentrations. This suggests that revisions are needed in the new particle formation and growth schemes currently applied in global modeling frameworks.
  • Kajos, M. K.; Rantala, P.; Hill, M.; Hellen, H.; Aalto, J.; Patokoski, J.; Taipale, R.; Hoerger, C. C.; Reimann, S.; Ruuskanen, T. M.; Rinne, J.; Petäjä, T. (2015)
    Proton transfer reaction mass spectrometry (PTR-MS) and gas chromatography mass spectrometry GC-MS) are commonly used methods for automated in situ measurements of various volatile organic compounds (VOCs) in the atmosphere. In order to investigate the reliability of such measurements, we operated four automated analyzers using their normal field measurement protocol side by side at a boreal forest site. We measured methanol, acetaldehyde, acetone, benzene and toluene by two PTR-MS and two GC-MS instruments. The measurements were conducted in southern Finland between 13 April and 14 May 2012. This paper presents correlations and biases between the concentrations measured using the four instruments. A very good correlation was found for benzene and acetone measurements between all instruments (the mean R value was 0.88 for both compounds), while for acetaldehyde and toluene the correlation was weaker (with a mean R value of 0.50 and 0.62, respectively). For some compounds, notably for methanol, there were considerable systematic differences in the mixing ratios measured by the different instruments, despite the very good correlation between the instruments (mean R = 0.90). The systematic difference manifests as a difference in the linear regression slope between measurements conducted between instruments, rather than as an offset. This mismatch indicates that the systematic uncertainty in the sensitivity of a given instrument can lead to an uncertainty of 50-100% in the methanol emissions measured by commonly used methods.
  • Massoli, Paola; Stark, Harald; Canagaratna, Manjula R.; Krechmer, Jordan E.; Xu, Lu; Ng, Nga L.; Mauldin, Roy L.; Yan, Chao; Kimmel, Joel; Misztal, Pawel K.; Jimenez, Jose L.; Jayne, John T.; Worsnop, Douglas R. (2018)
    We present measurements of highly oxidized multifunctional molecules (HOMs) detected in the gas phase using a high-resolution time-of flight chemical ionization mass spectrometer with nitrate reagent ion (NO3- CIMS). The measurements took place during the 2013 Southern Oxidant and Aerosol Study (SOAS 2013) at a forest site in Alabama, where emissions were dominated by biogenic volatile organic compounds (BVOCs). Primary BVOC emissions were represented by isoprene mixed with various terpenes, making it a unique sampling location compared to previous NO3- CIMS deployments in monoterpene-dominated environments. During SOAS 2013, the NO3- CIMS detected HOMs with oxygen-to-carbon (O:C) ratios between 0.5 and 1.4 originating from both isoprene (C-5) and monoterpenes (C-10) as well as hundreds of additional HOMs with carbon numbers between C-3 and C-20. We used positive matrix factorization (PMF) to deconvolve the complex data set and extract information about classes of HOMs with similar temporal trends. This analysis revealed three isoprene-dominated and three monoterpene-dominated PMF factors. We observed significant amounts of isoprene- and monoterpene-derived organic nitrates (ONs) in most factors. The abundant presence of ONs was consistent with previous studies that have highlighted the importance of NOx-driven chemistry at the site. One of the isoprene-dominated factors had a strong correlation with SO2 plumes likely advected from nearby coal-fired power plants and was dominated by an isoprene derived ON (C5H10N2O8). These results indicate that anthropogenic emissions played a significant role in the formation of low volatility compounds from BVOC emissions in the region.
  • Lambe, Andrew; Massoli, Paola; Zhang, Xuan; Canagaratna, Manjula; Nowak, John; Daube, Conner; Yan, Chao; Nie, Wei; Onasch, Timothy; Jayne, John; Kolb, Charles; Davidovits, Paul; Worsnop, Douglas; Brune, William (2017)
    Oxidation flow reactors that use low-pressure mercury lamps to produce hydroxyl (OH) radicals are an emerging technique for studying the oxidative aging of organic aerosols. Here, ozone (O-3) is photolyzed at 254 nm to produce O(D-1) radicals, which react with water vapor to produce OH. However, the need to use parts-per-million levels of O-3 hinders the ability of oxidation flow reactors to simulate NOx-dependent secondary organic aerosol (SOA) formation pathways. Simple addition of nitric oxide (NO) results in fast conversion of NOx (NO + NO2) to nitric acid (HNO3), making it impossible to sustain NOx at levels that are sufficient to compete with hydroperoxy (HO2) radicals as a sink for organic peroxy (RO2) radicals. We developed a new method that is well suited to the characterization of NOx-dependent SOA formation pathways in oxidation flow reactors. NO and NO2 are produced via the reaction O(D-1) + N2O -> 2NO, followed by the reaction NO + O-3 -> NO2 + O-2. Laboratory measurements coupled with photochemical model simulations suggest that O(D-1) + N2O reactions can be used to systematically vary the relative branching ratio of RO2 + NO reactions relative to RO2 + HO2 and/or RO2 + RO2 reactions over a range of conditions relevant to atmospheric SOA formation. We demonstrate proof of concept using high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) measurements with nitrate (NO3-) reagent ion to detect gas-phase oxidation products of isoprene and alpha-pinene previously observed in NOx-influenced environments and in laboratory chamber experiments.
  • Liebmann, Jonathan; Karu, Einar; Sobanski, Nicolas; Schuladen, Jan; Ehn, Mikael; Schallhart, Simon; Quelever, Lauriane; Hellen, Heidi; Hakola, Hannele; Hoffmann, Thorsten; Williams, Jonathan; Fischer, Horst; Lelieveld, Jos; Crowley, John N. (2018)
    We present the first direct measurements of NO3 reactivity (or inverse lifetime, s(-1))in the Finnish boreal forest. The data were obtained during the IBAIRN campaign (Influence of Biosphere-Atmosphere Interactions on the Reactive Nitrogen budget) which took place in Hyytiala, Finland during the summer/autumn transition in September 2016. The NO3 reactivity was generally very high with a maximum value of 0.94 s(-1) and displayed a strong diel variation with a campaign-averaged nighttime mean value of 0.11 s(-1) compared to a daytime value of 0.04 s(-1). The highest nighttime NO3 reactivity was accompanied by major depletion of canopy level ozone and was associated with strong temperature inversions and high levels of monoterpenes. The daytime reactivity was sufficiently large that reactions of NO3 with organic trace gases could compete with photolysis and reaction with NO. There was no significant reduction in the measured NO3 reactivity between the beginning and end of the campaign, indicating that any seasonal reduction in canopy emissions of reactive biogenic trace gases was offset by emissions from the forest floor. Observations of biogenic hydrocarbons (BVOCs) suggested a dominant role for monoterpenes in determining the NO3 reactivity. Reactivity not accounted for by in situ measurement of NO and BVOCs was variable across the diel cycle with, on average, approximate to 30% "missing" during nighttime and approximate to 60% missing during the day. Measurement of the NO3 reactivity at various heights (8.5 to 25 m) both above and below the canopy, revealed a strong nighttime, vertical gradient with maximum values closest to the ground. The gradient disappeared during the daytime due to efficient vertical mixing.
  • Kontkanen, Jenni; Järvinen, Emma; Manninen, Hanna E.; Lehtipalo, Katrianne; Kangasluoma, Juha; Decesari, Stefano; Gobbi, Gian Paolo; Laaksonen, Ari; Petäjä, Tuukka; Kulmala, Markku (2016)
    The concentrations of neutral and charged sub3nm clusters and their connection to new particle formation (NPF) were investigated during the PEGASOS campaign (7 June-9 July 2012) at the San Pietro Capofiume measurement station in the Po Valley, Italy. Continuous high concentrations of sub-3nm clusters were detected during the measurement period, although the condensation sink was relatively high (median value 1.1 x 10(-2) s(-1)). The median cluster concentrations were 2140 and 7980 cm 3 in the size bins of 1.5-1.8 and 1.8-3 nm, and the majority of them were electrically neutral. NPF events were observed during the measurement period frequently, on 86% of the days. The median growth rates of clusters during the events were 4.3, 6.0 and 7.2 nm h(-1) in the size ranges of 1.5-3, 3-7 and 720 nm. The median formation rate of 1.6 nm clusters was high, 45 cm 3 s(-1), and it exceeded the median formation rate of 2 nm clusters by 1 order of magnitude. The ion-induced nucleation fraction was low; the median values were 0.7% at 1.6 nm and 3.0% at 2 nm. On NPF event days the neutral cluster concentration had a maximum around 09: 00 (local winter time), which was absent on a non-event day. The increase in the cluster concentrations in the morning coincided with the increase in the boundary layer height. At the same time radiation, temperature and SO2 concentration increased, and RH and condensation sink decreased. The concentrations of neutral and charged clusters were observed to have a positive correlation with sulfuric acid proxy, indicating the significance of sulfuric acid for the cluster formation in San Pietro Capofiume. The condensation sink had a negative correlation with the concentration of charged clusters but no clear relation to the neutral cluster concentration. This finding, together with back-trajectory analysis, suggests that the precursor vapors of the clusters and background aerosol particles, acting as their sink, have possibly originated from the same sources, including e.g., power plants and industrial areas in the Po Valley.
  • Ehn, Mikael; Berndt, Torsten; Wildt, Juergen; Mentel, Thomas (2017)
    Recent advances in chemical ionization mass spectrometry have allowed the detection of a new group of compounds termed highly oxygenated molecules (HOM). These are atmospheric oxidation products of volatile organic compounds (VOC) retaining most of their carbon backbone, and with O/C ratios around unity. Owing to their surprisingly high yields and low vapor pressures, the importance of HOM for aerosol formation has been easy to verify. However, the opposite can be said concerning the exact formation pathways of HOM from major aerosol precursor VOC. While the role of peroxy radical autoxidation, i.e., consecutive intramolecular H-shifts followed by O-2 addition, has been recognized, the detailed formation mechanisms remain highly uncertain. A primary reason is that the autoxidation process occurs on sub-second timescales and is extremely sensitive to environmental conditions like gas composition, temperature, and pressure. This, in turn, poses a great challenge for chemical kinetics studies to be able to mimic the relevant atmospheric reaction pathways, while simultaneously using conditions suitable for studying the short-lived radical intermediates. In this perspective, we define six specific challenges for this community to directly observe the initial steps of atmospherically relevant autoxidation reactions and thereby facilitate vital improvements in the understanding of VOC degradation and organic aerosol formation. (C) 2017 Wiley Periodicals, Inc.
  • Ylivinkka, Ilona; Itämies, Juhani; Klemola, Tero; Ruohomäki, Kai; Kulmala, Markku; Taipale, Ditte (2020)
    Laboratory studies have shown that heibivory-induced biogenic volatile organic compound (BVOC) emissions might enhance aerosol formation and growth. To increase understanding of the atmospheric relevance of this enhancement, we analyzed 25 years of data from SMEAR I (Station for Measuring Ecosystem-Atmosphere Relations) in northern Finland, where autumnal moth (Epirrita autumnata) larvae are prominent defoliators of mountain birch. We did not find a direct correlation between the autumnal moth density and aerosol processes, nor between the total number concentration and temperature, and hence the basal BVOC emissions. Instead, there is some evidence that the total particle concentration is elevated even for a few years after the infestation due to delayed defense response of mountain birch. The low total biomass of the trees concomitantly with low autumnal moth densities during most of the years of our study, may have impacted our results, hindering the enhancement of aerosol processes.
  • Dall'Osto, M.; Beddows, D. C. S.; Asmi, A.; Poulain, L.; Hao, L.; Freney, E.; Allan, J. D.; Canagaratna, M.; Crippa, M.; Bianchi, F.; de Leeuw, G.; Eriksson, A.; Swietlicki, E.; Hansson, H. C.; Henzing, J. S.; Granier, C.; Zemankova, K.; Laj, P.; Onasch, T.; Prevot, A.; Putaud, J. P.; Sellegri, K.; Vidal, M.; Virtanen, A.; Simo, R.; Worsnop, D.; O'Dowd, C.; Kulmala, M.; Harrison, Roy M. (2018)
    The formation of new atmospheric particles involves an initial step forming stable clusters less than a nanometre in size (similar to 10 nm). Although at times, the same species can be responsible for both processes, it is thought that more generally each step comprises differing chemical contributors. Here, we present a novel analysis of measurements from a unique multi-station ground-based observing system which reveals new insights into continental-scale patterns associated with new particle formation. Statistical cluster analysis of this unique 2-year multi-station dataset comprising size distribution and chemical composition reveals that across Europe, there are different major seasonal trends depending on geographical location, concomitant with diversity in nucleating species while it seems that the growth phase is dominated by organic aerosol formation. The diversity and seasonality of these events requires an advanced observing system to elucidate the key processes and species driving particle formation, along with detecting continental scale changes in aerosol formation into the future.
  • Schobesberger, S.; Franchin, A.; Bianchi, F.; Rondo, L.; Duplissy, J.; Kuerten, A.; Ortega Colomer, Ismael Kenneth; Metzger, A.; Schnitzhofer, R.; Almeida, J.; Amorim, A.; Dommen, J.; Dunne, E. M.; Ehn, M.; Gagne, S.; Ickes, L.; Junninen, H.; Hansel, A.; Kerminen, V-M; Kirkby, J.; Kupc, A.; Laaksonen, A.; Lehtipalo, K.; Mathot, S.; Onnela, A.; Petaja, T.; Riccobono, F.; Santos, F. D.; Sipila, M.; Tome, A.; Tsagkogeorgas, G.; Viisanen, Y.; Wagner, P. E.; Wimmer, D.; Curtius, J.; Donahue, N. M.; Baltensperger, U.; Kulmala, M.; Worsnop, D. R. (2015)
  • Ahlberg, Erik; Falk, John; Eriksson, Axel; Holst, Thomas; Brune, William H.; Kristensson, Adam; Roldin, Pontus; Svenningsson, Birgitta (2017)
    The atmospheric organic aerosol is a tremendously complex system in terms of chemical content. Models generally treat the mixtures as ideal, something which has been questioned owing to model-measurement discrepancies. We used an oxidation flow reactor to produce secondary organic aerosol (SOA) mixtures containing oxidation products of biogenic (alpha-pinene, myrcene and isoprene) and anthropogenic (m-xylene) volatile organic compounds (VOCs). The resulting volume concentration and chemical composition was measured using a scanning mobility particle sizer (SMPS) and a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS), respectively. The SOA mass yield of the mixtures was compared to a partitioning model constructed from single VOC experiments. The single VOC SOA mass yields with no wall-loss correction applied are comparable to previous experiments. In the mixtures containing myrcene a higher yield than expected was produced. We attribute this to an increased condensation sink, arising from myrcene producing a significantly higher number of nucleation particles compared to the other precursors. Isoprene did not produce much mass in single VOC experiments but contributed to the mass of the mixtures. The effect of high concentrations of isoprene on the OH exposure was found to be small, even at OH reactivities that previously have been reported to significantly suppress OH exposures in oxidation flow reactors. Furthermore, isoprene shifted the particle size distribution of mixtures towards larger sizes, which could be due to a change in oxidant dynamics inside the reactor. (C) 2017 The Authors. Published by Elsevier Ltd.
  • Lee, Ben H.; Lopez-Hilfiker, Felipe D.; D'Ambro, Emma L.; Zhou, Putian; Boy, Michael; Petäjä, Tuukka; Hao, Liqing; Virtanen, Annele; Thornton, Joel A. (2018)
    We present hourly online observations of molecular compositions (CxHyOzN0-1) and abundances of oxygenated organic species in gas and submicron particle phases from April to June of 2014 as part of the Biogenic Aerosols-Effects on Cloud and Climate (BAECC) campaign. Measurements were made using the Filter Inlet for Gases and AEROsols coupled to a high-resolution time-of-flight iodide-adduct ionization mass spectrometer (FIGAERO-CIMS) located atop a 35m tall tower, about 10m above a boreal forest canopy at the SMEAR II research station in Hyytiala, Finland. Semi-volatile and highly oxygenated multifunctional (HOM) organic species possessing from 1 up to 20 carbon atoms, and with as few as 2 and as many as 16 oxygen atoms, were routinely observed. Utilizing non-negative matrix factorization, we determined that > 90 and > 99% of the organic mass in the gas and particle phases, respectively, exhibited one of three distinct diel trends: one in which abundances were enhanced at daytime, another in the early morning hours, and thirdly during nighttime. Particulate organic nitrates contributed similar to 35% to the total organic aerosol mass loading at night during BAECC, much higher than observed by the same instrument package at a mixed-deciduous forest site in the southeastern US that experienced higher nighttime concentrations of nitrogen oxides. Unique HOM monomers (defined here as those with 10 carbon and 7 or more oxygen atoms) and dimers (at least 16 carbon atoms), with and without a nitrogen atom, were found in most of the three subgroups of both phases. We show the potential to connect these groupings of compounds based on their distinct behavior in time to the expected chemical conditions (biogenic VOC precursor, oxidant type, etc.) responsible for their production. A suite of nitrated dimer-like compounds was detected in both the gas and particle phases, suggesting a potential role for the formation of low-volatility organics from NO3-radical-driven, as well as daytime NO-influenced, monoterpene chemistry.
  • Kontkanen, Jenni; Paasonen, Pauli; Aalto, Juho; Bäck, Jaana; Rantala, Pekka; Petäjä, Tuukka; Kulmala, Markku (2016)
    The oxidation products of monoterpenes likely have a crucial role in the formation and growth of aerosol particles in boreal forests. However, the continuous measurements of monoterpene concentrations are usually not available on decadal timescales, and the direct measurements of the concentrations of monoterpene oxidation product have so far been scarce. In this study we developed proxies for the concentrations of monoterpenes and their oxidation products at a boreal forest site in Hyytiala, southern Finland. For deriving the proxies we used the monoterpene concentration measured with a proton transfer reaction mass spectrometer (PTR-MS) during 2006-2013. Our proxies for the monoterpene concentration take into account the temperature-controlled emissions from the forest ecosystem, the dilution caused by the mixing within the boundary layer and different oxidation processes. All the versions of our proxies captured the seasonal variation of the monoterpene concentration, the typical proxy-to-measurements ratios being between 0.8 and 1.3 in summer and between 0.6 and 2.6 in winter. In addition, the proxies were able to describe the diurnal variation of the monoterpene concentration rather well, especially in summer months. By utilizing one of the proxies, we calculated the concentration of oxidation products of monoterpenes by considering their production in the oxidation and their loss due to condensation on aerosol particles. The concentration of oxidation products was found to have a clear seasonal cycle, with a maximum in summer and a minimum in winter. The concentration of oxidation products was lowest in the morning or around noon and highest in the evening. In the future, our proxies for the monoterpene concentration and their oxidation products can be used, for example, in the analysis of new particle formation and growth in boreal environments.
  • Faiola, C. L.; Buchholz, A.; Kari, E.; Yli-Pirila, P.; Holopainen, J. K.; Kivimäenpää, M.; Miettinen, P.; Worsnop, D. R.; Lehtinen, K. E. J.; Guenther, A. B.; Virtanen, A. (2018)
    Secondary organic aerosol (SOA) impact climate by scattering and absorbing radiation and contributing to cloud formation. SOA models are based on studies of simplified chemical systems that do not account for the chemical complexity in the atmosphere. This study investigated SOA formation from a mixture of real Scots pine (Pinus sylvestris) emissions including a variety of monoterpenes and sesquiterpenes. SOA generation was characterized from different combinations of volatile compounds as the plant emissions were altered with an herbivore stress treatment. During active herbivore feeding, monoterpene and sesquiterpene emissions increased, but SOA mass yields decreased after accounting for absorption effects. SOA mass yields were controlled by sesquiterpene emissions in healthy plants. In contrast, SOA mass yields from stressed plant emissions were controlled by the specific blend of monoterpene emissions. Conservative estimates using a box model approach showed a 1.5- to 2.3-fold aerosol enhancement when the terpene complexity was taken into account. This enhancement was relative to the commonly used model monoterpene, "alpha-pinene". These results suggest that simplifying terpene complexity in SOA models could lead to underpredictions in aerosol mass loading.