Browsing by Subject "BIOGEOCHEMICAL CYCLES"

Sort by: Order: Results:

Now showing items 1-3 of 3
  • Gustafsson, Erik; Gustafsson, Bo G. (2020)
    Future acidification of coastal seas will depend not only on the development of atmospheric CO2 partial pressure (pCO(2)), but also on changes in the catchment areas, exchange with the adjacent ocean, and internal cycling of carbon and nutrients. Here we use a coupled physical-biogeochemical Baltic Sea model to quantify the sensitivity of pH to changes both in external forcing and internal processes. The experiments include changes in runoff, supply of dissolved inorganic carbon (DIC) and total alkalinity (A(T)), nutrient loads, exchange between the Baltic and North Seas, and atmospheric pCO(2). We furthermore address the potential different future developments of runoff and river loads in boreal and continental catchments, respectively. Changes in atmospheric pCO(2) exert the strongest control on future pH according to our calculations. This CO2-induced acidification could be further enhanced in the case of desalination of the Baltic Sea, although increased concentrations of A(T) in the river runoff due to increased weathering to some extent could counteract acidification. Reduced nutrient loads and productivity would reduce the average annual surface water pH but at the same time slightly increase wintertime surface water pH (the annual pH minimum). The response time of surface water pH to sudden changes in atmospheric pCO(2) is approximately one month, whereas response times to changes in e.g. runoff and A(T)/DIC loads are more related to residence times of water and salt (> 30 years). It seems unlikely that the projected future increase in atmospheric pCO(2) and associated pH reduction could be fully counteracted by any of the other processes addressed in our experiments.
  • Hermans, Martijn; Lenstra, Wytze K.; van Helmond, Niels A. G. M.; Behrends, Thilo; Egger, Matthias; Seguret, Marie J. M.; Gustafsson, Erik; Gustafsson, Bo G.; Slomp, Caroline P. (2019)
    The Baltic Sea is characterized by the largest area of hypoxic (oxygen (O-2) <2 mg L-1) bottom waters in the world's ocean induced by human activities. Natural ventilation of these O-2-depleted waters largely depends on episodic Major Baltic Inflows from the adjacent North Sea. In 2014 and 2015, two such inflows led to a strong rise in O-2 and decline in phosphate (HPO42-) in waters below 125 m depth in the Eastern Gotland Basin. This provided the opportunity to assess the impact of such re-oxygenation events on the cycles of manganese (Mn), iron (Fe) and phosphorus (P) in the sediment for the first time. We demonstrate that the re-oxygenation induced the activity of sulphur (S)-oxidising bacteria, known as Beggiatoaceae in the surface sediment where a thin oxic and suboxic layer developed. At the two deepest sites, strong enrichments of total Mn and to a lesser extent Fe oxides and P were observed in this surface layer. A combination of sequential sediment extractions and synchrotron-based X-ray spectroscopy revealed evidence for the abundant presence of P-bearing rhodochrosite and Mn(II) phosphates. In contrast to what is typically assumed, the formation of Fe oxides in the surface sediment was limited. We attribute this lack of Fe oxide formation to the high flux of reductants, such as sulphide, from deeper sediments which allows Fe (II) in the form of FeS to be preserved and restricts the penetration of O-2 into the sediment. We estimate that enhanced P sequestration in surface sediments accounts for only similar to 5% of water column HPO42- removal in the Eastern Gotland Basin linked to the recent inflows. The remaining HPO42- was transported to adjacent areas in the Baltic Sea. Our results highlight that the benthic O-2 demand arising from the accumulation of organic-rich sediments over several decades, the legacy of hypoxia, has major implications for the biogeochemical response of euxinic basins to re-oxygenation. In particular, P sequestration in the sediment in association with Fe oxides is limited. This implies that artificial ventilation projects that aim at removing water column HPO42- and thereby improving water quality in the Baltic Sea will likely not have the desired effect. (C) 2018 Elsevier Ltd. All rights reserved.
  • Jilbert, Tom; Gustafsson, Bo G.; Veldhuijzen, Simon; Reed, Daniel C.; Helmond, Niels A. G. M.; Hermans, Martijn; Slomp, Caroline P. (2021)
    Hypoxia has occurred intermittently in the Baltic Sea since the establishment of brackish-water conditions at similar to 8,000 years B.P., principally as recurrent hypoxic events during the Holocene Thermal Maximum (HTM) and the Medieval Climate Anomaly (MCA). Sedimentary phosphorus release has been implicated as a key driver of these events, but previous paleoenvironmental reconstructions have lacked the sampling resolution to investigate feedbacks in past iron-phosphorus cycling on short timescales. Here we employ Laser Ablation (LA)-ICP-MS scanning of sediment cores to generate ultra-high resolution geochemical records of past hypoxic events. We show that in-phase multidecadal oscillations in hypoxia intensity and iron-phosphorus cycling occurred throughout these events. Using a box model, we demonstrate that such oscillations were likely driven by instabilities in the dynamics of iron-phosphorus cycling under preindustrial phosphorus loads, and modulated by external climate forcing. Oscillatory behavior could complicate the recovery from hypoxia during future trajectories of external loading reductions.