Browsing by Subject "BIOMASS ALLOCATION"

Sort by: Order: Results:

Now showing items 1-7 of 7
  • Yu, Lei; Song, Mengya; Lei, Yanbao; Korpelainen, Helena; Niinemets, Ulo; Li, Chunyang (2019)
    Leaf and root systems are known to show a high degree of developmental plasticity in response to the local environment. However, few studies have investigated simultaneously the leaf and root traits as affected by competition and phosphorus (P) fertilization, especially in connection with the primary succession. We investigated morphological and physiological responses to different competition treatments (infra- vs. interspecific competition) and P regimes in seedlings of Abies fabri and Picea brachytyla, collected from the late succession stage Hailuogou glacier retreat area. A. fabri had a greater total chlorophyll content and specific leaf area (SLA), higher leaf nitrogen (N) and P concentrations, as well as a higher water use efficiency (assessed by the carbon isotope composition, delta C-13) and N absorption relative to P. brachytyla under P fertilization conditions, and its total biomass responded more strongly to P fertilization, especially under interspecific competition. P fertilization decreased the specific root length (SRL) and ectomycorrhizal infection in both species and specific root tip density in P. brachytyla but it had no effect on the average root diameter. We concluded that similar changes in root characteristics, but the superior performance of above-ground traits in A. fabri in response to P availability, especially under competition, explain the greater competitive capacity of A. fabri at final stages of succession. These findings highlight the influence of soil nutrition availability and competition on the functional traits of plants and contribute to the understanding of the role of relative modifications in leaf and root traits during succession.
  • Yu, Lei; Song, Mengya; Lei, Yanbao; Duan, Baoli; Berninger, Frank; Korpelainen, Helena; Niinemets, Ülo; Li, Chunyang (2017)
    Intra- and interspecific competition and modifications in environmental characteristics are the main drivers of plant community dynamics, but few studies have investigated the combined effects of competition and phosphorus (P) availability on ecological succession. Seedlings of conifers Abies fabri and Picea brachytyla were collected from the late-stage Hailuogou glacier retreat area and grown under different P regimes (control and P fertilization) to investigate the impact of intra- and interspecific competition on photosynthetic capacity, resource (water, N and P) use efficiency and growth performance in two types of native soil. In the control treatment, there were no differences in the total biomass of A. fabri between the two competition patterns under either type of soil, whereas interspecific competition decreased the total biomass of P. brachytyla grown in the soil collected from A. fabri plots. However, under P fertilization, A. fabri individuals exposed to interspecific competition showed a stronger competitive ability, as their total biomass, absolute height growth rate, net photosynthetic rate, water use efficiency (delta C-13) and leaf P content were significantly higher under interspecific competition compared to intraspecific competition. No differences in these traits were detected in P. brachytyla between the two competition patterns. The results indicated that P plays an important role in determining asymmetric competition patterns among Pinaceae species. The interactive effect of interspecific competition and P availability highlighted here could influence the community composition and dynamics of plants during late stage primary succession in a glacier retreat area.
  • Saarinen, Ninni; Kankare, Ville; Huuskonen, Saija; Hynynen, Jari; Bianchi, Simone; Yrttimaa, Tuomas; Luoma, Ville; Junttila, Samuli; Holopainen, Markus; Hyyppae, Juha; Vastaranta, Mikko (2022)
    Trees adapt to their growing conditions by regulating the sizes of their parts and their relationships. For example, removal or death of adjacent trees increases the growing space and the amount of light received by the remaining trees enabling their crowns to expand. Knowledge about the effects of silvicultural practices on crown size and shape and also about the quality of branches affecting the shape of a crown is, however, still limited. Thus, the aim was to study the crown structure of individual Scots pine trees in forest stands with varying stem densities due to past forest management practices. Furthermore, we wanted to understand how crown and stem attributes and also tree growth affect stem area at the height of maximum crown diameter (SAHMC), which could be used as a proxy for tree growth potential. We used terrestrial laser scanning (TLS) to generate attributes characterizing crown size and shape. The results showed that increasing stem density decreased Scots pine crown size. TLS provided more detailed attributes for crown characterization compared with traditional field measurements. Furthermore, decreasing stem density increased SAHMC, and strong relationships (Spearman's correlations > 0.5) were found between SAHMC and crown and stem size and also stem growth. Thus, this study provided quantitative and more comprehensive characterization of Scots pine crowns and their growth potential. The combination of a traditional growth and yield study design and 3D characterization of crown architecture and growth potential can open up new research possibilities.
  • Li, Junyu; Wu, Guoxi; Guo, Qingxue; Korpelainen, Helena; Li, Chunyang (2018)
    There are significant differences in the morphological and physiological responses of larch species with contrasting growth rates under fertilization. However, little is known about species-specific differences in responses to nutrient imbalance caused by fertilization. Therefore, in this study, the effects of nitrogen (N) and phosphorus (P) fertilization on the morphological, physiological and chloroplast ultrastructural traits of two contrasting larch species, fast-growing Larix kaempferi and slowly-growing L. olgensis, grown in larch plantation soil, were investigated during two growth seasons. It was shown that N and combined N and P (NP) fertilization increased plant photosynthesis, foliar N contents, chlorophyll contents, and dry mass accumulation and partitioning in aboveground organs in both larch species. Although P fertilization enhanced P accumulation, its presence reduced the N content in soluble proteins in the foliage of both larch species. Yet, P fertilization exhibited some differences in the two species: P fertilization increased photosynthesis, chlorophyll content and biomass accumulation of L. olgensis, while it decreased these parameters dramatically in L. kaempfert P fertilization increased foliar N content in L. olgensis, while it reduced it in L. kaempferi. P fertilized L. kaempferi had more damaged chloroplast ultrastructure than L. olgensis. In addition, L. kaempferi exhibited lower acid phosphatase activities, and higher photosynthesis and biomass accumulation than L. olgensis, except under P fertilization. L. kaempferi allocated more biomass into needles, except under P fertilization, while L. olgensis allocated more into stems under fertilization. In conclusion, it was shown that nutrient imbalance caused by P fertilization has greater negative effects on a fast-growing species than on a slowly-growing one, and the negative effects are related to differences in acclimation strategies, N partitioning to photosynthetic components, and P transportation and metabolism in the foliage.
  • Wang, Linping; Poque, Sylvain; Valkonen, Jari P. T. (2019)
    Background Virus diseases caused by co-infection with Sweet potato feathery mottle virus (SPFMV) and Sweetpotato chlorotic stunt virus (SPCSV) are a severe problem in the production of sweetpotato (Ipomoea batatas L.). Traditional molecular virus detection methods include nucleic acid-based and serological tests. In this study, we aimed to validate the use of a non-destructive imaging-based plant phenotype platform to study plant-virus synergism in sweetpotato by comparing four virus treatments with two healthy controls. Results By monitoring physiological and morphological effects of viral infection in sweetpotato over 29 days, we quantified photosynthetic performance from chlorophyll fluorescence (ChlF) imaging and leaf thermography from thermal infrared (TIR) imaging among sweetpotatoes. Moreover, the differences among different treatments observed from ChlF and TIR imaging were related to virus accumulation and distribution in sweetpotato. These findings were further validated at the molecular level by related gene expression in both photosynthesis and carbon fixation pathways. Conclusion Our study validated for the first time the use of ChlF- and TIR-based imaging systems to distinguish the severity of virus diseases related to SPFMV and SPCSV in sweetpotato. In addition, we demonstrated that the operating efficiency of PSII and photochemical quenching were the most sensitive parameters for the quantification of virus effects compared with maximum quantum efficiency, non-photochemical quenching, and leaf temperature.
  • Kaitaniemi, Pekka; Lintunen, Anna; Sievanen, Risto (2020)
    We demonstrate the efficacy of power-law models in the analysis of tree branch growth. The models can be interpreted as allometric equations, which incorporate multiple driving variables in a single scaling relationship to predict the amount of growth within a branch. We first used model selection criteria to identify the variables that most influenced (1) the length of individual elongating annual shoots and (2) the total length of all elongating annual shoots in the individual branches of silver birch (Betula pendula Roth). We then applied the two resulting power-law equations as dynamic models to predict the trajectories of crown profile development and accumulation of branch biomass during tree growth, using total branch length as a proxy for biomass. In spite of the wide size range and geographical distribution of the study trees, the models successfully reproduced the dynamic characteristics of crown development and branch biomass accumulation. Applying the model to predict long-term growth of a single branch that was initiated at the crown top generated a realistic crown profile and produced a final basal branch size that was well within the range of field observations. The models also predicted a set of more subtle and non-trivial features of crown formation, including the increased rate of growth towards the tree apex, decrease in growth towards the lowest branches, the effect of branching order on the amount of elongation, and the higher vigour of thick branches when the effect of branch height was controlled. In contrast, a simple allometric model of the form Y = aX(b) was incapable of capturing all the variability in growth of individual branches and of predicting the features of crown shape and branch size that are associated with the slowing-down of growth towards the crown base. We conclude that power-law models where the parameter a is refined to include spatial information on branch features shows good potential for identifying and incorporating actual crown construction processes in dynamic models that utilize the structural features of tree crowns.
  • Han, Qingquan; Guo, Qingxue; Korpelainen, Helena; Niinemets, Ulo; Li, Chunyang (2019)
    To increase yield and/or enhance resistance to diseases, grafting is often applied in agriculture and horticulture. Interspecific grafting could possibly be used in forestry as well to improve drought resistance, but our understanding of how the rootstock of a more drought-resistant species can affect the grafted plant is very limited. Reciprocal grafts of two poplar species, Populus cathayana Rehder (less drought-resistant, C) and Populus deltoides Bart. ex Marsh (more drought-resistant, D) were generated. Four grafting combinations (scion/rootstock: C/C, C/D, D/D and D/C) were subjected to well-watered and drought stress treatments. C/D and D/C had a higher diameter growth rate, leaf biomass, intrinsic water-use efficiency (WUEi) and total non-structural carbohydrate (NSC) content than C/C and D/D in well-watered condition. However, drought caused greater differences between P. deltoides-rooted and P. cathayana-rooted grafting combinations, especially between C/D and D/C. The C/D grafting combination showed higher resistance to drought, as indicated by a higher stem growth rate, net photosynthetic rate, WUEi, leaf water potential, proline concentration and NSC concentration and maintenance of integrity of the leaf cellular ultrastructure under drought when compared with D/C. D/C exhibited severely damaged cell membranes, mitochondria and chloroplasts under drought. The scion genotype caused a strong effect on the root proline concentration: the P. cathayana scion increased the root proline concentration more than the P. deltoides scion (C/C vs D/C and C/D vs D/D) under water deficit. Our results demonstrated that mainly the rootstock was responsible for the drought resistance of grafting combinations. Grafting of the P. cathayana scion onto P. deltoides rootstock resulted in superior growth and biomass when compared with the other three combinations both in well-watered and drought stress conditions.