Browsing by Subject "BOREAL FOREST"

Sort by: Order: Results:

Now showing items 1-20 of 73
  • Silva, S. J.; Heald, C. L.; Ravela, S.; Mammarella, I.; Munger, J. William (2019)
    The loss of ozone to terrestrial and aquatic systems, known as dry deposition, is a highly uncertain process governed by turbulent transport, interfacial chemistry, and plant physiology. We demonstrate the value of using Deep Neural Networks (DNN) in predicting ozone dry deposition velocities. We find that a feedforward DNN trained on observations from a coniferous forest site (Hyytiala, Finland) can predict hourly ozone dry deposition velocities at a mixed forest site (Harvard Forest, Massachusetts) more accurately than modern theoretical models, with a reduction in the normalized mean bias (0.05 versus similar to 0.1). The same DNN model, when driven by assimilated meteorology at 2 degrees x 2.5 degrees spatial resolution, outperforms the Wesely scheme as implemented in the GEOS-Chem model. With more available training data from other climate and ecological zones, this methodology could yield a generalizable DNN suitable for global models. Plain Language Summary Ozone in the lower atmosphere is a toxic pollutant and greenhouse gas. In this work, we use a machine learning technique known as deep learning, to simulate the loss of ozone to Earth's surface. We show that our deep learning simulation of this loss process outperforms existing traditional models and demonstrate the opportunity for using machine learning to improve our understanding of the chemical composition of the atmosphere.
  • Heiskanen, Juha; Hagner, Marleena; Ruhanen, Hanna; Maekitalo, Kari (2020)
    Mine closures require landscape reclamation to reduce the environmental risks of tailings fields. However, information about the feasibility of recyclable waste materials as a growth medium layer for the cover systems of mine tailings and their effects on vegetation restoration and reforestation success is scant especially in the boreal climate. This study examines the use of various recyclable by-products in improving vegetation success on reclaimed mine tailings. The physical and chemical properties of two wood biochar types, fibre clay, compost, tailings soil and forest till soil as well as their effects as growth media on the growth of several plant species during one growing period in a greenhouse were examined. Marked differences in the properties (e.g. pH, element concentrations, water retention) as well as in plant growth among the growth media were found. Fresh non-oxidized tailings soil showed high salt contents and electrical conductivity which together with fine soil texture provided the poorest or nonexistent plant growth. Fibre clay was the coarsest and driest material and also showed poor plant growth. Root and shoot growth was greatest in pure compost. All media without compost additive showed relatively poor growth which indicates the lack of nitrogen. The results suggest that forest till soil and biochar are the most suitable growth media for the cover systems of mine tailings when added with compost or another nitrogen source. Scots pine container seedlings, willow cuttings and sown red clover showed to be the most feasible plant species to be grown on boreal tailings covers.
  • Pajunoja, Aki; Lambe, Andrew T.; Hakala, Jani; Rastak, Narges; Cummings, Molly J.; Brogan, James F.; Hao, Liqing; Paramonov, Mikhail; Hong, Juan; Prisle, Nonne L.; Malila, Jussi; Romakkaniemi, Sami; Lehtinen, Kari E. J.; Laaksonen, Ari; Kulmala, Markku; Massoli, Paola; Onasch, Timothy B.; Donahue, Neil M.; Riipinen, Ilona; Davidovits, Paul; Worsnop, Douglas R.; Petaja, Tuukka; Virtanen, Annele (2015)
    Aerosol climate effects are intimately tied to interactions with water. Here we combine hygroscopicity measurements with direct observations about the phase of secondary organic aerosol (SOA) particles to show that water uptake by slightly oxygenated SOA is an adsorption-dominated process under subsaturated conditions, where low solubility inhibits water uptake until the humidity is high enough for dissolution to occur. This reconciles reported discrepancies in previous hygroscopicity closure studies. We demonstrate that the difference in SOA hygroscopic behavior in subsaturated and supersaturated conditions can lead to an effect up to about 30% in the direct aerosol forcinghighlighting the need to implement correct descriptions of these processes in atmospheric models. Obtaining closure across the water saturation point is therefore a critical issue for accurate climate modeling.
  • Xausa, Filippo; Paasonen, Pauli; Makkonen, Risto; Arshinov, Mikhail; Ding, Aijun; Van Der Gon, Hugo Denier; Kerminen, Veli-Matti; Kulmala, Markku (2018)
    Climate models are important tools that are used for generating climate change projections, in which aerosol-climate interactions are one of the main sources of uncertainties. In order to quantify aerosol-radiation and aerosolcloud interactions, detailed input of anthropogenic aerosol number emissions is necessary. However, the anthropogenic aerosol number emissions are usually converted from the corresponding mass emissions in pre-compiled emission inventories through a very simplistic method depending uniquely on chemical composition, particle size and density, which are defined for a few, very wide main source sectors. In this work, the anthropogenic particle number emissions converted from the AeroCom mass in the ECHAM-HAM climate model were replaced with the recently formulated number emissions from the Greenhouse Gas and Air Pollution Interactions and Synergies (GAINS) model. In the GAINS model the emission number size distributions vary, for example, with respect to the fuel and technology. Special attention was paid to accumulation mode particles (particle diameter d(p) > 100 nm) because of (i) their capability of acting as cloud condensation nuclei (CCN), thus forming cloud droplets and affecting Earth's radiation budget, and (ii) their dominant role in forming the coagulation sink and thus limiting the concentration of sub-100 nm particles. In addition, the estimates of anthropogenic CCN formation, and thus the forcing from aerosol-climate interactions, are expected to be affected. Analysis of global particle number concentrations and size distributions reveals that GAINS implementation increases CCN concentration compared with AeroCom, with regional enhancement factors reaching values as high as 10. A comparison between modeled and observed concentrations shows that the increase in number concentration for accumulation mode particles agrees well with measurements, but it leads to a consistent underestimation of both nucleation mode and Aitken mode (d(p) <100 nm) particle number concentrations. This suggests that revisions are needed in the new particle formation and growth schemes currently applied in global modeling frameworks.
  • Rannik, Ullar; Zhou, Luxi; Zhou, Putian; Gierens, Rosa; Mammarella, Ivan; Sogachev, Andrey; Boy, Michael (2016)
    A 1-D atmospheric boundary layer (ABL) model coupled with a detailed atmospheric chemistry and aerosol dynamical model, the model SOSAA, was used to predict the ABL and detailed aerosol population (characterized by the number size distribution) time evolution. The model was applied over a period of 10 days in May 2013 to a pine forest site in southern Finland. The period was characterized by frequent new particle formation events and simultaneous intensive aerosol transformation. The aim of the study was to analyze and quantify the role of aerosol and ABL dynamics in the vertical transport of aerosols. It was of particular interest to what extent the fluxes above the canopy deviate from the particle dry deposition on the canopy foliage due to the above-mentioned processes. The model simulations revealed that the particle concentration change due to aerosol dynamics frequently exceeded the effect of particle deposition by even an order of magnitude or more. The impact was, however, strongly dependent on particle size and time. In spite of the fact that the timescale of turbulent transfer inside the canopy is much smaller than the timescales of aerosol dynamics and dry deposition, leading us to assume well-mixed properties of air, the fluxes at the canopy top frequently deviated from deposition inside the forest. This was due to transformation of aerosol concentration throughout the ABL and resulting complicated pattern of vertical transport. Therefore we argue that the comparison of timescales of aerosol dynamics and deposition defined for the processes below the flux measurement level do not unambiguously describe the importance of aerosol dynamics for vertical transport above the canopy. We conclude that under dynamical conditions reported in the current study the micrometeorological particle flux measurements can significantly deviate from the dry deposition into the canopy. The deviation can be systematic for certain size ranges so that the time-averaged particle fluxes can be also biased with respect to deposition sink.
  • Xavier, Carlton; Rusanen, Anton; Zhou, Putian; Chen, Dean; Pichelstorfer, Lukas; Pontus, Roldin; Boy, Michael (2019)
    In this study we modeled secondary organic aerosol (SOA) mass loadings from the oxidation (by O-3, OH and NO3) of five representative biogenic volatile organic compounds (BVOCs): isoprene, endocyclic bond-containing monoterpenes (alpha-pinene and limonene), exocyclic double-bond compound (beta-pinene) and a sesquiterpene (beta-caryophyllene). The simulations were designed to replicate an idealized smog chamber and oxidative flow reactors (OFRs). The Master Chemical Mechanism (MCM) together with the peroxy radical autoxidation mechanism (PRAM) were used to simulate the gas-phase chemistry. The aim of this study was to compare the potency of MCM and MCM + PRAM in predicting SOA formation. SOA yields were in good agreement with experimental values for chamber simulations when MCM + PRAM was applied, while a stand-alone MCM underpredicted the SOA yields. Compared to experimental yields, the OFR simulations using MCM + PRAM yields were in good agreement for BVOCs oxidized by both O-3 and OH. On the other hand, a stand-alone MCM underpredicted the SOA mass yields. SOA yields increased with decreasing temperatures and NO concentrations and vice versa. This highlights the limitations posed when using fixed SOA yields in a majority of global and regional models. Few compounds that play a crucial role (> 95% of mass load) in contributing to SOA mass increase (using MCM + PRAM) are identified. The results further emphasized that incorporating PRAM in conjunction with MCM does improve SOA mass yield estimation.
  • Sirkiä, Saija; Lindén, Andreas; Helle, Pekka; Nikula, Ari; Knape, Jonas; Lindén, Harto (2010)
  • Cervantes, Sandra; Vuosku, Jaana; Pyhajarvi, Tanja (2021)
    Despite their ecological and economical importance, conifers genomic resources are limited, mainly due to the large size and complexity of their genomes. Additionally, the available genomic resources lack complete structural and functional annotation. Transcriptomic resources have been commonly used to compensate for these deficiencies, though for most conifer species they are limited to a small number of tissues, or capture only a fraction of the genes present in the genome. Here we provide an atlas of gene expression patterns for conifer Pinus sylvestris across five tissues: embryo, megagametophyte, needle, phloem and vegetative bud. We used a wide range of tissues and focused our analyses on the expression profiles of genes at tissue level. We provide comprehensive information of the per-tissue normalized expression level, indication of tissue preferential upregulation and tissue-specificity of expression. We identified a total of 48,001 tissue preferentially upregulated and tissue specifically expressed genes, of which 28% have annotation in the Swiss-Prot database. Even though most of the putative genes identified do not have functional information in current biological databases, the tissue-specific patterns discovered provide valuable information about their potential functions for further studies, as for example in the areas of plant physiology, population genetics and genomics in general. As we provide information on tissue specificity at both diploid and haploid life stages, our data will also contribute to the understanding of evolutionary rates of different tissue types and ploidy levels.
  • Abbott, Benjamin W.; Jones, Jeremy B.; Schuur, Edward A. G.; Chapin, F. Stuart; Bowden, William B.; Bret-Harte, M. Syndonia; Epstein, Howard E.; Flannigan, Michael D.; Harms, Tamara K.; Hollingsworth, Teresa N.; Mack, Michelle C.; McGuire, A. David; Natali, Susan M.; Rocha, Adrian V.; Tank, Suzanne E.; Turetsky, Merritt R.; Vonk, Jorien E.; Wickland, Kimberly P.; Aiken, George R.; Alexander, Heather D.; Amon, Rainer M. W.; Benscoter, Brian W.; Bergeron, Yves; Bishop, Kevin; Blarquez, Olivier; Bond-Lamberty, Ben; Breen, Amy L.; Buffam, Ishi; Cai, Yihua; Carcaillet, Christopher; Carey, Sean K.; Chen, Jing M.; Chen, Han Y. H.; Christensen, Torben R.; Cooper, Lee W.; Cornelissen, J. Hans C.; de Groot, William J.; DeLuca, Thomas H.; Dorrepaal, Ellen; Fetcher, Ned; Finlay, Jacques C.; Forbes, Bruce C.; French, Nancy H. F.; Gauthier, Sylvie; Girardin, Martin P.; Goetz, Scott J.; Goldammer, Johann G.; Gough, Laura; Grogan, Paul; Guo, Laodong; Higuera, Philip E.; Hinzman, Larry; Hu, Feng Sheng; Hugelius, Gustaf; Jafarov, Elchin E.; Jandt, Randi; Johnstone, Jill F.; Karlsson, Jan; Kasischke, Eric S.; Kattner, Gerhard; Kelly, Ryan; Keuper, Frida; Kling, George W.; Kortelainen, Pirkko; Kouki, Jari; Kuhry, Peter; Laudon, Hjalmar; Laurion, Isabelle; Macdonald, Robie W.; Mann, Paul J.; Martikainen, Pertti J.; McClelland, James W.; Molau, Ulf; Oberbauer, Steven F.; Olefeldt, David; Pare, David; Parisien, Marc-Andre; Payette, Serge; Peng, Changhui; Pokrovsky, Oleg S.; Rastetter, Edward B.; Raymond, Peter A.; Raynolds, Martha K.; Rein, Guillermo; Reynolds, James F.; Robards, Martin; Rogers, Brendan M.; Schaedel, Christina; Schaefer, Kevin; Schmidt, Inger K.; Shvidenko, Anatoly; Sky, Jasper; Spencer, Robert G. M.; Starr, Gregory; Striegl, Robert G.; Teisserenc, Roman; Tranvik, Lars J.; Virtanen, Tarmo; Welker, Jeffrey M.; Zimov, Sergei (2016)
    As the permafrost region warms, its large organic carbon pool will be increasingly vulnerable to decomposition, combustion, and hydrologic export. Models predict that some portion of this release will be offset by increased production of Arctic and boreal biomass; however, the lack of robust estimates of net carbon balance increases the risk of further overshooting international emissions targets. Precise empirical or model-based assessments of the critical factors driving carbon balance are unlikely in the near future, so to address this gap, we present estimates from 98 permafrost-region experts of the response of biomass, wildfire, and hydrologic carbon flux to climate change. Results suggest that contrary to model projections, total permafrost-region biomass could decrease due to water stress and disturbance, factors that are not adequately incorporated in current models. Assessments indicate that end-of-the-century organic carbon release from Arctic rivers and collapsing coastlines could increase by 75% while carbon loss via burning could increase four-fold. Experts identified water balance, shifts in vegetation community, and permafrost degradation as the key sources of uncertainty in predicting future system response. In combination with previous findings, results suggest the permafrost region will become a carbon source to the atmosphere by 2100 regardless of warming scenario but that 65%-85% of permafrost carbon release can still be avoided if human emissions are actively reduced.
  • Olden, Anna; Ovaskainen, Otso; Kotiaho, Janne S.; Laaka-Lindberg, Sanna; Halme, Panu (2014)
  • Back, J.; Aalto, J.; Hemmilä, Marja S; Hakola, H.; He, Q.; Boy, M. (2012)
  • Buenrostro Mazon, S.; Riipinen, I.; Schultz, D. M.; Valtanen, M.; Dal Maso, M.; Sogacheva, L.; Junninen, H.; Nieminen, T.; Kerminen, V. -M.; Kulmala, M. (2009)
  • Kulmala, Markku; Nieminen, Tuomo; Nikandrova, Anna; Lehtipalo, Katrianne; Manninen, Hanna E.; Kajos, Maija K.; Kolari, Pasi; Lauri, Antti; Petaja, Tuukka; Krejci, Radovan; Hansson, Hans-Christen; Swietlicki, Erik; Lindroth, Anders; Christensen, Torben R.; Arneth, Almut; Hari, Pertti; Back, Jaana; Vesala, Timo; Kerminen, Veli-Matti (2014)
  • Hao, Liqing; Garmash, Olga; Ehn, Mikael; Miettinen, Pasi; Massoli, Paola; Mikkonen, Santtu; Jokinen, Tuija; Roldin, Pontus; Aalto, Pasi; Yli-Juuti, Taina; Joutsensaari, Jorma; Petäjä, Tuukka; Kulmala, Markku; Lehtinen, Kari E. J.; Worsnop, Douglas R.; Virtanen, Annele (2018)
    Characterizing aerosol chemical composition in response to meteorological changes and atmospheric chemistry is important to gain insights into new particle formation mechanisms. A BAECC (Biogenic Aerosols - Effects on Clouds and Climate) campaign was conducted during the spring 2014 at the SMEAR II station (Station for Measuring Forest Ecosystem-Aerosol Relations) in Finland. The particles were characterized by a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). A PBL (planetary boundary layer) dilution model was developed to assist interpreting the measurement results. Right before nucleation events, the mass concentrations of organic and sulfate aerosol species were both decreased rapidly along with the growth of PBL heights. However, the mass fraction of sulfate aerosol of the total aerosol mass was increased, in contrast to a decrease for the organic mass fraction. Meanwhile, an increase in LVOOA (low-volatility oxygenated organic aerosol) mass fraction of the total organic mass was observed, in distinct comparison to a reduction of SVOOA (semi-volatile OOA) mass fraction. Our results demonstrate that, at the beginning of nucleation events, the observed sulfate aerosol mass was mainly driven by vertical turbulent mixing of sulfate-rich aerosols between the residual layer and the newly formed boundary layer, while the condensation of sulfuric acid (SA) played a minor role in interpreting the measured sulfate mass concentration. For the measured organic aerosols, their temporal profiles were mainly driven by dilution from PBL development, organic aerosol mixing in different boundary layers and/or partitioning of organic vapors, but accurate measurements of organic vapor concentrations and characterization on the spatial aerosol chemical composition are required. In general, the observed aerosol particles by AMS are subjected to joint effects of PBL dilution, atmospheric chemistry and aerosol mixing in different boundary layers. During aerosol growth periods in the nighttime, the mass concentrations of organic aerosols and organic nitrate aerosols were both increased. The increase in SVOOA mass correlated well with the calculated increase in condensed HOMs' (highly oxygenated organic molecules) mass. To our knowledge, our results are the first atmospheric observations showing a connection between increase in SVOOA and condensed HOMs during the nighttime.
  • Nikandrova, Anna; Tabakova, Ksenia; Manninen, Antti J.; Väänänen, Riikka; Petäjä, Tuukka; Kulmala, Markku; Kerminen, Veli-Matti; O'Connor, Ewan (2018)
    Understanding the distribution of aerosol layers is important for determining long-range transport and aerosol radiative forcing. In this study we combine airborne in situ measurements of aerosol with data obtained by a ground-based high spectral resolution lidar (HSRL) and radiosonde profiles to investigate the temporal and vertical variability of aerosol properties in the lower troposphere. The HSRL was deployed in Hyytiala, southern Finland, from January to September 2014 as a part of the U.S. DOE ARM (Atmospheric Radiation Measurement) mobile facility during the BAECC (Biogenic Aerosols - Effects on Cloud and Climate) Campaign. Two flight campaigns took place in April and August 2014 with instruments measuring the aerosol size distribution from 10 nm to 5 mu m at altitudes up to 3800 m. Two case studies with several aerosol layers present were selected from the flight campaigns for further investigation: one clear-sky and one partly cloudy case. During the clear-sky case, turbulent mixing ensured small temporal and spatial variability in the measured aerosol size distribution in the boundary layer, whereas mixing was not as homogeneous in the boundary layer during the partly cloudy case. The elevated layers exhibited larger temporal and spatial variability in aerosol size distribution, indicating a lack of mixing. New particle formation was observed in the boundary layer during the clear-sky case, and nucleation mode particles were also seen in the elevated layers that were not mixing with the boundary layer. Interpreting local measurements of elevated layers in terms of long-range transport can be achieved using back trajectories from Lagrangian models, but care should be taken in selecting appropriate arrival heights, since the modelled and observed layer heights did not always coincide. We conclude that higher confidence in attributing elevated aerosol layers to their air mass origin is attained when back trajectories are combined with lidar and radiosonde profiles.
  • Kaasalainen, Sanna; Holopainen, Markus; Karjalainen, Mika; Vastaranta, Mikko; Kankare, Ville; Karila, Kirsi; Osmanoglu, Batuhan (2015)
  • Smolander, S.; He, Q.; Mogensen, D.; Zhou, L.; Back, J.; Ruuskanen, T.; Noe, S.; Guenther, A.; Aaltonen, Hermanni; Kulmala, M.; Boy, M. (2014)
    Biogenic volatile organic compounds (BVOCs) are essential in atmospheric chemistry because of their chemical reactions that produce and destroy tropospheric ozone, their effects on aerosol formation and growth, and their potential influence on global warming. As one of the important BVOC groups, monoterpenes have been a focus of scientific attention in atmospheric research. Detailed regional measurements and model estimates are needed to study emission potential and the monoterpene budget on a global scale. Since the use of empirical measurements for upscaling is limited by many physical and biological factors, such as genetic variation, temperature and light, water availability, seasonal changes, and environmental stresses, comprehensive inventories over larger areas are difficult to obtain. We applied the boundary-layer–chemistry-transport model SOSA (model to Simulate the concentrations of Organic vapours and Sulphuric Acid) to investigate Scots pine (Pinus sylvestris) monoterpene emissions in a boreal coniferous forest at the SMEAR (Station for Measuring forest Ecosystem–Atmosphere Relations) II site, southern Finland. SOSA was applied to simulate monoterpene emissions with three different emission modules: the semiempirical G95, MEGAN (Model of Emissions of Gases and Aerosols from Nature) 2.04 with improved descriptions of temperature and light responses and including also carbonyl emissions, and a process-based model SIM–BIM (Seasonal Isoprenoid synthase Model – Biochemical Isoprenoid biosynthesis Model). For the first time, the emission models included seasonal and diurnal variations in both quantity and chemical species of emitted monoterpenes, based on parameterizations obtained from field measurements. Results indicate that modelling and observations agreed reasonably well and that the model can be used for investigating regional air chemistry questions related to monoterpenes. The predominant modelled monoterpene concentrations, α-pinene and Δ3-carene, are consistent with observations.
  • Rantala, Pekka; Taipale, Risto; Aalto, Juho; Kajos, Maija K.; Patokoski, Johanna; Ruuskanen, Taina M.; Rinne, Janne (2014)
  • Zhou, L.; Gierens, R.; Sogachev, A.; Mogensen, D.; Ortega, J.; Smith, J. N.; Harley, P. C.; Prenni, A. J.; Levin, E. J. T.; Turnipseed, A.; Rusanen, A.; Smolander, S.; Guenther, A. B.; Kulmala, Markku; Karl, T.; Boy, M. (2015)
    New particle formation (NPF) is an important atmospheric phenomenon. During an NPF event, particles first form by nucleation and then grow further in size. The growth step is crucial because it controls the number of particles that can become cloud condensation nuclei. Among various physical and chemical processes contributing to particle growth, condensation by organic vapors has been suggested as important. In order to better understand the influence of biogenic emissions on particle growth, we carried out modeling studies of NPF events during the BEACHON-ROCS (Biohydro-atmosphere interactions of Energy, Aerosol, Carbon, H2O, Organics & Nitrogen - Rocky Mountain Organic Carbon Study) campaign at Manitou Experimental Forest Observatory in Colorado, USA. The site is representative of the semi-arid western USA. With the latest Criegee intermediate reaction rates implemented in the chemistry scheme, the model underestimates sulfuric acid concentration by 50 %, suggesting either missing sources of atmospheric sulfuric acid or an overestimated sink term. The results emphasize the contribution from biogenic volatile organic compound emissions to particle growth by demonstrating the effects of the oxidation products of monoterpenes and 2-Methyl-3-buten-2-ol (MBO). Monoterpene oxidation products are shown to influence the nighttime particle loadings significantly, while their concentrations are insufficient to grow the particles during the day. The growth of ultrafine particles in the daytime appears to be closely related to the OH oxidation products of MBO.
  • Simon, Mario; Heinritzi, Martin; Herzog, Stephan; Leiminger, Markus; Bianchi, Federico; Praplan, Arnaud; Dommen, Josef; Curtius, Joachim; Kuerten, Andreas (2016)
    Amines are potentially important for atmospheric new particle formation, but their concentrations are usually low with typical mixing ratios in the pptv range or even smaller. Therefore, the demand for highly sensitive gas-phase amine measurements has emerged in the last several years. Nitrate chemical ionization mass spectrometry (CIMS) is routinely used for the measurement of gas-phase sulfuric acid in the sub-pptv range. Furthermore, extremely low volatile organic compounds (ELVOCs) can be detected with a nitrate CIMS. In this study we demonstrate that a nitrate CIMS can also be used for the sensitive measurement of dimethylamine (DMA, (CH3)(2)NH) using the NO3-center dot(HNO3)(1-2)center dot(DMA) cluster ion signal. Calibration measurements were made at the CLOUD chamber during two different measurement campaigns. Good linearity between 0 and similar to 120 pptv of DMA as well as a sub-pptv detection limit of 0.7 pptv for a 10 min integration time are demonstrated at 278 K and 38% RH.