Browsing by Subject "BOREAL FORESTS"

Sort by: Order: Results:

Now showing items 1-20 of 36
  • Nadal-Sala, Daniel; Grote, Ruediger; Birami, Benjamin; Lintunen, Anna; Mammarella, Ivan; Preisler, Yakir; Rotenberg, Eyal; Salmon, Yann; Tatarinov, Fedor; Yakir, Dan; Ruehr, Nadine K. (2021)
    Climate change will impact forest productivity worldwide. Forecasting the magnitude of such impact, with multiple environmental stressors changing simultaneously, is only possible with the help of process-based models. In order to assess their performance, such models require careful evaluation against measurements. However, direct comparison of model outputs against observational data is often not reliable, as models may provide the right answers due to the wrong reasons. This would severely hinder forecasting abilities under unprecedented climate conditions. Here, we present a methodology for model assessment, which supplements the traditional output-to-observation model validation. It evaluates model performance through its ability to reproduce observed seasonal changes of the most limiting environmental driver (MLED) for a given process, here daily gross primary productivity (GPP). We analyzed seasonal changes of the MLED for GPP in two contrasting pine forests, the Mediterranean Pinus halepensis Mill. Yatir (Israel) and the boreal Pinus sylvestris L. Hyytiala (Finland) from three years of eddy-covariance flux data. Then, we simulated the same period with a state-of-the-art process-based simulation model (LandscapeDNDC). Finally, we assessed if the model was able to reproduce both GPP observations and MLED seasonality. We found that the model reproduced the seasonality of GPP in both stands, but it was slightly overestimated without site-specific fine-tuning. Interestingly, although LandscapeDNDC properly captured the main MLED in Hyytiala (temperature) and in Yatir (soil water availability), it failed to reproduce high-temperature and high-vapor pressure limitations of GPP in Yatir during spring and summer. We deduced that the most likely reason for this divergence is an incomplete description of stomatal behavior. In summary, this study validates the MLED approach as a model evaluation tool, and opens up new possibilities for model improvement.
  • Flechard, Chris R.; Ibrom, Andreas; Skiba, Ute M.; de Vries, Wim; van Oijen, Marcel; Cameron, David R.; Dise, Nancy B.; Korhonen, Janne F. J.; Buchmann, Nina; Legout, Arnaud; Simpson, David; Sanz, Maria J.; Aubinet, Marc; Loustau, Denis; Montagnani, Leonardo; Neirynck, Johan; Janssens, Ivan A.; Pihlatie, Mari; Kiese, Ralf; Siemens, Jan; Francez, Andre-Jean; Augustin, Juergen; Varlagin, Andrej; Olejnik, Janusz; Juszczak, Radoslaw; Aurela, Mika; Berveiller, Daniel; Chojnicki, Bogdan H.; Dammgen, Ulrich; Delpierre, Nicolas; Djuricic, Vesna; Drewer, Julia; Dufrene, Eric; Eugster, Werner; Fauvel, Yannick; Fowler, David; Frumau, Arnoud; Granier, Andre; Gross, Patrick; Hamon, Yannick; Helfter, Carole; Hensen, Arjan; Horvath, Laszlo; Kitzler, Barbara; Kruijt, Bart; Kutsch, Werner L.; Lobo-do-Vale, Raquel; Lohila, Annalea; Longdoz, Bernard; Marek, Michal; Matteucci, Giorgio; Mitosinkova, Marta; Moreaux, Virginie; Neftel, Albrecht; Ourcival, Jean-Marc; Pilegaard, Kim; Pita, Gabriel; Sanz, Francisco; Schjoerring, Jan K.; Sebastia, Maria-Teresa; Tang, Y. Sim; Uggerud, Hilde; Urbaniak, Marek; van Dijk, Netty; Vesala, Timo; Vidic, Sonja; Vincke, Caroline; Weidinger, Tamas; Zechmeister-Boltenstern, Sophie; Butterbach-Bah, Klaus; Nemitz, Eiko; Sutton, Mark A. (2020)
    The impact of atmospheric reactive nitrogen (N-r) deposition on carbon (C) sequestration in soils and biomass of unfertilized, natural, semi-natural and forest ecosystems has been much debated. Many previous results of this dC/dN response were based on changes in carbon stocks from periodical soil and ecosystem inventories, associated with estimates of N-r deposition obtained from large-scale chemical transport models. This study and a companion paper (Flechard et al., 2020) strive to reduce uncertainties of N effects on C sequestration by linking multi-annual gross and net ecosystem productivity estimates from 40 eddy covariance flux towers across Europe to local measurement-based estimates of dry and wet N-r deposition from a dedicated collocated monitoring network. To identify possible ecological drivers and processes affecting the interplay between C and N-r inputs and losses, these data were also combined with in situ flux measurements of NO, N2O and CH4 fluxes; soil NO3- leaching sampling; and results of soil incubation experiments for N and greenhouse gas (GHG) emissions, as well as surveys of available data from online databases and from the literature, together with forest ecosystem (BAS-FOR) modelling. Multi-year averages of net ecosystem productivity (NEP) in forests ranged from -70 to 826 gCm(-2) yr(-1) at total wet + dry inorganic N-r deposition rates (N-dep) of 0.3 to 4.3 gNm(-2) yr(-1) and from -4 to 361 g Cm-2 yr(-1) at N-dep rates of 0.1 to 3.1 gNm(-2) yr(-1) in short semi-natural vegetation (moorlands, wetlands and unfertilized extensively managed grasslands). The GHG budgets of the forests were strongly dominated by CO2 exchange, while CH4 and N2O exchange comprised a larger proportion of the GHG balance in short semi-natural vegetation. Uncertainties in elemental budgets were much larger for nitrogen than carbon, especially at sites with elevated N-dep where N-r leaching losses were also very large, and compounded by the lack of reliable data on organic nitrogen and N-2 losses by denitrification. Nitrogen losses in the form of NO, N2O and especially NO3- were on average 27%(range 6 %-54 %) of N-dep at sites with N-dep <1 gNm(-2) yr(-1) versus 65% (range 35 %-85 %) for N-dep > 3 gNm(-2) yr(-1). Such large levels of N-r loss likely indicate that different stages of N saturation occurred at a number of sites. The joint analysis of the C and N budgets provided further hints that N saturation could be detected in altered patterns of forest growth. Net ecosystem productivity increased with N-r deposition up to 2-2.5 gNm(-2) yr(-1), with large scatter associated with a wide range in carbon sequestration efficiency (CSE, defined as the NEP/GPP ratio). At elevated N-dep levels (> 2.5 gNm(-2) yr(-1)), where inorganic N-r losses were also increasingly large, NEP levelled off and then decreased. The apparent increase in NEP at low to intermediate N-dep levels was partly the result of geographical cross-correlations between N-dep and climate, indicating that the actual mean dC/dN response at individual sites was significantly lower than would be suggested by a simple, straightforward regression of NEP vs. N-dep.
  • Flechard, Chris R.; van Oijen, Marcel; Cameron, David R.; de Vries, Wim; Ibrom, Andreas; Buchmann, Nina; Dise, Nancy B.; Janssens, Ivan A.; Neirynck, Johan; Montagnani, Leonardo; Varlagin, Andrej; Loustau, Denis; Legout, Arnaud; Ziemblinska, Klaudia; Aubinet, Marc; Aurela, Mika; Chojnicki, Bogdan H.; Drewer, Julia; Eugster, Werner; Francez, Andre-Jean; Juszczak, Radoslaw; Kitzler, Barbara; Kutsch, Werner L.; Lohila, Annalea; Longdoz, Bernard; Matteucci, Giorgio; Moreaux, Virginie; Nefte, Albrecht; Olejnik, Janusz; Sanz, Maria J.; Siemens, Jan; Vesala, Timo; Vincke, Caroline; Nemitz, Eiko; Zechmeister-Boltenstern, Sophie; Butterbach-Bahl, Klaus; Skiba, Ute M.; Sutton, Mark A. (2020)
    The effects of atmospheric nitrogen deposition (N-dep) on carbon (C) sequestration in forests have often been assessed by relating differences in productivity to spatial variations of N-dep across a large geographic domain. These correlations generally suffer from covariation of other confounding variables related to climate and other growth-limiting factors, as well as large uncertainties in total (dry + wet) reactive nitrogen (N-r) deposition. We propose a methodology for untangling the effects of N-dep from those of meteorological variables, soil water retention capacity and stand age, using a mechanistic forest growth model in combination with eddy covariance CO2 exchange fluxes from a Europe-wide network of 22 forest flux towers. Total N-r deposition rates were estimated from local measurements as far as possible. The forest data were compared with data from natural or semi-natural, non-woody vegetation sites. The response of forest net ecosystem productivity to nitrogen deposition (dNEP/dN(dep)) was estimated after accounting for the effects on gross primary productivity (GPP) of the co-correlates by means of a meta-modelling standardization procedure, which resulted in a reduction by a factor of about 2 of the uncorrected, apparent dGPP/dN(dep) value. This model-enhanced analysis of the C and N-dep flux observations at the scale of the European network suggests a mean overall dNEP/dN(dep) response of forest lifetime C sequestration to N-dep of the order of 40-50 g C per g N, which is slightly larger but not significantly different from the range of estimates published in the most recent reviews. Importantly, patterns of gross primary and net ecosystem productivity versus N-dep were non-linear, with no further growth responses at high N-dep levels (N-dep > 2.5-3 gNm(-2) yr(-1)) but accompanied by increasingly large ecosystem N losses by leaching and gaseous emissions. The reduced increase in productivity per unit N deposited at high N-dep levels implies that the forecast increased N-r emissions and increased N-dep levels in large areas of Asia may not positively impact the continent's forest CO2 sink. The large level of unexplained variability in observed carbon sequestration efficiency (CSE) across sites further adds to the uncertainty in the dC/dN response.
  • Kulmala, Markku; Ezhova, Ekaterina; Kalliokoski, Tuomo; Noe, Steffen; Vesala, Timo; Lohila, Annalea; Liski, Jari; Makkonen, Risto; Bäck, Jaana; Petäjä, Tuukka; Kerminen, Veli-Matti (2020)
    Forests cool the climate system by acting as a sink for carbon dioxide (CO2) and by enhancing the atmospheric aerosol load. whereas the simultaneous decrease of the surface albedo tends to have a warming effect. Here, we present the concept of CarbonSink+. which considers these combined effects. Using the boreal forest environment as an illustrative example, we estimated that accounting for the CarbonSink+ enhances the forest CO2 uptake by 10-50% due to the combined effects of CO2 fertilization and aerosol-induced diffuse radiation enhancement on photosynthesis. We further estimated that with afforestation or reforestation, i.e., replacing grasslands with forests in a boreal environment, the radiative cooling due to forest aerosols cancels most of the radiative warming due to decreased surface albedos. These two forcing components have. however, relatively large uncertainty ranges. resulting in large uncertainties in the overall effect of CarbonSink+. We discuss shortly the potential future changes in the strength of CarbonSink+ in the boreal region, resulting from changes in atmospheric composition and climate.
  • Yu, Xiaowei; Hyyppä, Juha; Karjalainen, Mika; Nurminen, Kimmo; Karila, Kirsi; Vastaranta, Mikko; Kankare, Ville; Kaartinen, Harri; Holopainen, Markus; Honkavaara, Eija; Kukko, Antero; Jaakkola, Anttoni; Liang, Xinlian; Wang, Yunsheng; Hyyppä, Hannu; Katoh, Masato (2015)
    It is anticipated that many of the future forest mapping applications will be based on three-dimensional (3D) point clouds. A comparison study was conducted to verify the explanatory power and information contents of several 3D remote sensing data sources on the retrieval of above ground biomass (AGB), stem volume (VOL), basal area (G), basal-area weighted mean diameter (D-g) and Lorey's mean height (H-g) at the plot level, utilizing the following data: synthetic aperture radar (SAR) Interferometry, SAR radargrammetry, satellite-imagery having stereo viewing capability, airborne laser scanning (ALS) with various densities (0.8-6 pulses/m(2)) and aerial stereo imagery. Laser scanning is generally known as the primary source providing a 3D point cloud. However, photogrammetric, radargrammetric and interferometric techniques can be used to produce 3D point clouds from space- and air-borne stereo images. Such an image-based point cloud could be utilized in a similar manner as ALS providing that accurate digital terrain model is available. In this study, the performance of these data sources for providing point cloud data was evaluated with 91 sample plots that were established in Evo, southern Finland within a boreal forest zone and surveyed in 2014 for this comparison. The prediction models were built using random forests technique with features derived from each data sources as independent variables and field measurements of forest attributes as response variable. The relative root mean square errors (RMSEs) varied in the ranges of 4.6% (0.97 m)-13.4% (2.83 m) for H-g, 11.7% (3.0 cm)-20.6% (5.3 cm) for D-g, 14.8% (4.0 m(2)/ha)-25.8% (6.9 m(2)/ha) for G, 15.9% (43.0 m(3)/ha)-31.2% (84.2 m(3)/ha) for VOL and 14.3% (19.2 Mg/ha)-27.5% (37.0 Mg/ha) for AGB, respectively, depending on the data used. Results indicate that ALS data achieved the most accurate estimates for all forest inventory attributes. For image-based 3D data, high-altitude aerial images and WorldView-2 satellite optical image gave similar results for H-g and D-g, which were only slightly worse than those of ALS data. As expected, spaceborne SAR data produced the worst estimates. WorldView-2 satellite data performed well, achieving accuracy comparable to the one with ALS data for G, VOL and AGB estimation. SAR interferometry data seems to contain more information for forest inventory than SAR radargrammetry and reach a better accuracy (relative RMSE decreased from 13.4% to 9.5% for H-g, 20.6% to 19.2% for D-g, 25.8% to 20.9% for G, 31.2% to 22.0% for VOL and 27.5% to 20.7% for AGB, respectively). However, the availability of interferometry data is limited. The results confirmed the high potential of all 3D remote sensing data sources for forest inventory purposes. However, the assumption of using other than ALS data is that there exist a high quality digital terrain model, in our case it was derived from ALS.
  • Kaasalainen, Ulla Susanna; Tuovinen, Veera; Mwachala, Geoffrey; Pellikka, Petri; Rikkinen, Jouko Kalevi (2021)
    Interactions within lichen communities include, in addition to close mutualistic associations between the main partners of specific lichen symbioses, also more elusive relationships between members of a wider symbiotic community. Here, we analyze association patterns of cyanolichen symbionts in the tropical montane forests of Taita Hills, southern Kenya, which is part of the Eastern Afromontane biodiversity hotspot. The cyanolichen specimens analyzed represent 74 mycobiont taxa within the order Peltigerales (Ascomycota), associating with 115 different variants of the photobionts genus Nostoc (Cyanobacteria). Our analysis demonstrates wide sharing of photobionts and reveals the presence of several photobiont-mediated lichen guilds. Over half of all mycobionts share photobionts with other fungal species, often from different genera or even families, while some others are strict specialists and exclusively associate with a single photobiont variant. The most extensive symbiont network involves 24 different fungal species from five genera associating with 38 Nostoc photobionts. The Nostoc photobionts belong to two main groups, the Nephroma-type Nostoc and the Collema/Peltigera-type Nostoc, and nearly all mycobionts associate only with variants of one group. Among the mycobionts, species that produce cephalodia and those without symbiotic propagules tend to be most promiscuous in photobiont choice. The extent of photobiont sharing and the structure of interaction networks differ dramatically between the two major photobiont-mediated guilds, being both more prevalent and nested among Nephroma guild fungi and more compartmentalized among Peltigera guild fungi. This presumably reflects differences in the ecological characteristics and/or requirements of the two main groups of photobionts. The same two groups of Nostoc have previously been identified from many lichens in various lichen-rich ecosystems in different parts of the world, indicating that photobiont sharing between fungal species is an integral part of lichen ecology globally. In many cases, symbiotically dispersing lichens can facilitate the dispersal of sexually reproducing species, promoting establishment and adaptation into new and marginal habitats and thus driving evolutionary diversification.
  • White, Joanne C.; Saarinen, Ninni; Kankare, Ville; Wulder, Michael A.; Hermosilla, Txomin; Coops, Nicholas C.; Pickell, Paul D.; Holopainen, Markus; Hyyppä, Juha; Vastaranta, Mikko (2018)
    Landsat time series (LTS) enable the characterization of forest recovery post-disturbance over large areas; however, there is a gap in our current knowledge concerning the linkage between spectral measures of recovery derived from LTS and actual manifestations of forest structure in regenerating stands. Airborne laser scanning (ALS) data provide useful measures of forest structure that can be used to corroborate spectral measures of forest recovery. The objective of this study was to evaluate the utility of a spectral index of recovery based on the Normalized Burn Ratio (NBR): the years to recovery, or Y2R metric, as an indicator of the return of forest vegetation following forest harvest (clearcutting). The Y2R metric has previously been defined as the number of years required for a pixel to return to 80% of its pre-disturbance NBR (NBRpre) value. In this study, the Composite2Change (C2C) algorithm was used to generate a time series of gap-free, cloud-free Landsat surface reflectance composites (1985–2012), associated change metrics, and a spatially-explicit dataset of detected changes for an actively managed forest area in southern Finland (5.3 Mha). The overall accuracy of change detection, determined using independent validation data, was 89%. Areas of forest harvesting in 1991 were then used to evaluate the Y2R metric. Four alternative recovery scenarios were evaluated, representing variations in the spectral threshold used to define Y2R: 60%, 80%, and 100% of NBRpre, and a critical value of z (i.e. the year in which the pixel's NBR value is no longer significantly different from NBRpre). The Y2R for each scenario were classified into five groups: recovery within 17 years, and not recovered. Measures of forest structure (canopy height and cover) were obtained from ALS data. Benchmarks for height (>5 m) and canopy cover (>10%) were applied to each recovery scenario, and the percentage of pixels that attained both of these benchmarks for each recovery group, was determined for each Y2R scenario. Our results indicated that the Y2R metric using the 80% threshold provided the most realistic assessment of forest recovery: all pixels considered in our analysis were spectrally recovered within the analysis period, with 88.88% of recovered pixels attaining the benchmarks for both cover and height. Moreover, false positives (pixels that had recovered spectrally, but not structurally) and false negatives (pixels that had recovered structurally, but not spectrally) were minimized with the 80% threshold. This research demonstrates the efficacy of LTS-derived assessments of recovery, which can be spatially exhaustive and retrospective, providing important baseline data for forest monitoring.
  • Forsius, Martin; Kujala, Heini; Minunno, Francesco; Holmberg, Maria; Leikola, Niko; Mikkonen, Ninni; Autio, Iida; Paunu, Ville-Veikko; Tanhuanpää, Topi; Hurskainen, Pekka; Mäyrä, Janne; Kivinen, Sonja; Keski-Saari, Sarita; Kosenius, Anna-Kaisa; Kuusela, Saija; Virkkala, Raimo; Viinikka, Arto; Vihervaara, Petteri; Akujarvi, Anu; Bäck, Jaana; Karvosenoja, Niko; Kumpula, Timo; Kuzmin, Anton; Mäkelä, Annikki; Moilanen, Atte; Ollikainen, Markku; Pekkonen, Minna; Peltoniemi, Mikko; Poikolainen, Laura; Rankinen, Katri; Rasilo, Terhi; Tuominen, Sakari; Valkama, Jari; Vanhala, Pekka; Heikkinen, Risto K (2021)
    The challenges posed by climate change and biodiversity loss are deeply interconnected. Successful co-managing of these tangled drivers requires innovative methods that can prioritize and target management actions against multiple criteria, while also enabling cost-effective land use planning and impact scenario assessment. This paper synthesises the development and application of an integrated multidisciplinary modelling and evaluation framework for carbon and biodiversity in forest systems. By analysing and spatio-temporally modelling carbon processes and biodiversity elements, we determine an optimal solution for their co-management in the study landscape. We also describe how advanced Earth Observation measurements can be used to enhance mapping and monitoring of biodiversity and ecosystem processes. The scenarios used for the dynamic models were based on official Finnish policy goals for forest management and climate change mitigation. The development and testing of the system were executed in a large region in southern Finland (Kokemäenjoki basin, 27 024 km2) containing highly instrumented LTER (Long-Term Ecosystem Research) stations; these LTER data sources were complemented by fieldwork, remote sensing and national data bases. In the study area, estimated total net emissions were currently 4.2 TgCO2eq a-1, but modelling of forestry measures and anthropogenic emission reductions demonstrated that it would be possible to achieve the stated policy goal of carbon neutrality by low forest harvest intensity. We show how this policy-relevant information can be further utilised for optimal allocation of set-aside forest areas for nature conservation, which would significantly contribute to preserving both biodiversity and carbon values in the region. Biodiversity gain in the area could be increased without a loss of carbon-related benefits.
  • Hamberg, Leena; Velmala, Sannakajsa M.; Sievänen, Risto; Kalliokoski, Tuomo; Pennanen, Taina (2018)
    The relationship between the growth rate of aboveground parts of trees and fine root development is largely unknown. We investigated the early root development of fast-and slow-growing Norway spruce (Picea abies (L.) H. Karst.) families at a developmental stage when the difference in size is not yet observed. Seedling root architecture data, describing root branching, were collected with the WinRHIZO (TM) image analysis system, and mixed models were used to determine possible differences between the two growth phenotypes. A new approach was used to investigate the spatial extent of root properties along the whole sample root from the base of 1-year-old seedlings to the most distal part of a root. The root architecture of seedlings representing fastgrowing phenotypes showed similar to 30% higher numbers of root branches and tips, which resulted in larger root extensions and potentially a better ability to acquire nutrients. Seedlings of fast-growing phenotypes oriented and allocated root tips and bio-mass further away from the base of the seedling than those growing slowly, a possible advantage in nutrient-limited and heterogeneous boreal forest soils. We conclude that a higher long-term growth rate of the aboveground parts in Norway spruce may relate to greater allocation of resources to explorative roots that confers a competitive edge during early growth phases in forest ecosystems.
  • Kilpeläinen, A.; Strandman, H.; Grönholm, T.; Ikonen, V. -P.; Torssonen, P.; Kellomaki, S.; Peltola, H. (2017)
    We investigated how the initial age structure of a managed, middle boreal (62A degrees N), Norway spruce-dominated (Picea abies L. Karst.) forest area affects the net climate impact of using forest biomass for energy. The model-based analysis used a gap-type forest ecosystem model linked to a life cycle assessment (LCA) tool. The net climate impact of energy biomass refers to the difference in annual net CO2 exchange between the biosystem using forest biomass (logging residues from final felling) and the fossil (reference) system using coal. In the simulations over the 80-year period, the alternative initial age structures of the forest areas were (i) skewed to the right (dominated by young stands), (ii) normally distributed (dominated by middle-aged stands), (iii) skewed to the left (dominated by mature stands), and (iv) evenly distributed (same share of different age classes). The effects of management on net climate impacts were studied using current recommendations as a baseline with a fixed rotation period of 80 years. In alternative management scenarios, the volume of the growing stock was maintained 20% higher over the rotation compared to the baseline, and/or nitrogen fertilization was used to enhance carbon sequestration. According to the results, the initial age structure of the forest area affected largely the net climate impact of using energy biomass over time. An initially right-skewed age structure produced the highest climate benefits over the 80-year simulation period, in contrast to the left-skewed age structure. Furthermore, management that enhanced carbon sequestration increased the potential of energy biomass to replace coal, reducing CO2 emissions and enhancing climate change mitigation.
  • Kauppi, P. E.; Birdsey, R. A.; Pan, Y.; Ihalainen, A.; Nöjd, P.; Lehtonen, A. (2015)
  • Saine, Sonja; Aakala, Tuomas; Purhonen, Jenna; Launis, Annina; Tuovila, Hanna; Kosonen, Timo; Halme, Panu (2018)
    Human-induced fragmentation affects forest continuity, i.e. availability of a suitable habitat for the target species over a time period. The dependence of wood-inhabiting fungi on landscape level continuity has been well demonstrated, but the importance of local continuity has remained controversial. In this study, we explored the effects of local forest continuity (microhabitat and stand level) on the diversity of wood-inhabiting fungi on standing dead trunks of Scots pine (Paws sylvestris L.). We studied species richness and community composition of decomposers and Micarea lichens on 70 trunks in 14 forests in central Finland that differed in their state of continuity. We used dendrochronological methods to assess the detailed history of each study trunk, i.e. the microhabitat continuity. The stand continuity was estimated as dead wood diversity and past management intensity (number of stumps). We recorded 107 species (91 decomposers, 16 Micarea lichens), with a total of 510 occurrences. Using generalized linear mixed models, we found that none of the variables explained decomposer species richness, but that Micarea species richness was positively dependent on the time since tree death. Dead wood diversity was the most important variable determining the composition of decomposer communities. For Micarea lichens, the community composition was best explained by the combined effect of years from death, site and dead wood diversity. However, these effects were rather tentative. The results are in line with those of previous studies suggesting the restricted significance of local forest continuity for wood-inhabiting fungi. However, standing dead pines that have been available continuously over long periods seem to be important for species-rich communities of Micarea lichens. Rare specialists (e.g. on veteran trees) may be more sensitive to local continuity, and should be at the center of future research.
  • Linnakoski, Riikka; Sugano, Junko; Junttila, Samuli; Pulkkinen, Pertti; Asiegbu, Fred O.; Forbes, Kristian M. (2017)
    Norway spruce is one of the most important commercial forestry species in Europe, and is commonly infected by the bark beetle-vectored necrotrophic fungus, Endoconidiophora polonica. Spruce trees display a restricted capacity to respond to environmental perturbations, and we hypothesized that water limitation will increase disease severity in this pathosystem. To test this prediction, 737 seedlings were randomized to high (W+) or low (W-) water availability treatment groups, and experimentally inoculated with one of three E. polonica strains or mock-inoculated. Seedling mortality was monitored throughout an annual growing season, and total seedling growth and lesion length indices were measured at the experiment conclusion. Seedling growth was greater in the W+ than W- treatment group, demonstrating limitation due to water availability. For seedlings infected with two of the fungal strains, no differences in disease severity occurred in response to water availability. For the third fungal strain, however, greater disease severity (mortality and lesion lengths) occurred in W- than W+ seedlings. While the co-circulation in nature of multiple E. polonica strains of varying virulence is known, this is the first experimental evidence that water availability can alter strain-specific disease severity.
  • Härkönen, Sanna; Lehtonen, Aleksi; Manninen, Terhikki; Tuominen, Sakari; Peltoniemi, Mikko (2015)
    Leaf area index (LAI) is a key variable for many ecological models, but it is typically not available from basic forest inventories. In this study, we (1) construct a high-resolution LAI map using k nearest-neighbor (k-NN) imputation based on National Forest Inventory data and Landsat 5 TM images (Landsat-NFI LAI), and (2) examine a moderate-resolution LAI map produced based on reduced simple ratio derived from MODIS reflectances (MODIS-RSR LM). The maps cover all the forested areas in Finland. Country-level averages of Landsat-NFI and MODIS-RSR LAI were at same level, but several geographical and land-use related differences between them were detected. Difference was the largest in the lake district of Finland and in northern Finland, and it increased with decreasing share of forests and increasing share of deciduous trees. As MODIS-RSR LAI does not take into account the sub-pixel variation in land use, Landsat-NFI LAI was found to produce more reliable estimates.
  • Kankare, Ville; Joensuu, Marianna; Vauhkonen, Jari; Holopainen, Markus; Tanhuanpaa, Topi; Vastaranta, Mikko; Hyyppa, Juha; Hyyppa, Hannu; Alho, Petteri; Rikala, Juha; Sipi, Marketta (2014)
  • Heinonsalo, Jussi; Sun, Hui; Santalahti, Minna; Bäcklund, Kirsi; Hari, Pertti; Pumpanen, Jukka (2015)
    Ectomycorrhizal (ECM) symbiosis has been proposed to link plant photosynthesis and soil organic matter (SOM) decomposition through the production of fungal enzymes which promote SOM degradation and nitrogen (N) uptake. However, laboratory and field evidence for the existence of these processes are rare. Piloderma sp., a common ECM genus in boreal forest soil, was chosen as model mycorrhiza for this study. The abundance of Piloderma sp. was studied in root tips and soil over one growing season and in winter. Protease production was measured from ectomycorrhiza and soil solution in the field and pure fungal cultures. We also tested the effect of Piloderma olivaceum on host plant organic N nutrition in the laboratory. The results showed that Piloderma sp. was highly abundant in the field and produced extracellular proteases, which correlated positively with the gross primary production, temperature and soil respiration. In the laboratory, Piloderma olivaceum could improve the ability of Pinus sylvestris L. to utilize N from extragenous proteins. We suggest that ECM fungi, although potentially retaining N in their hyphae, are important in forest C and N cycling due to their ability to access proteinaeous N. As Piloderma sp. abundance appeared to be seasonally highly variable, recycling of fungal-bound N after hyphal death may therefore be of primary importance for the N cycling in boreal ecosystems.
  • Leppälammi-Kujansuu, Jaana; Aro, Lasse; Salemaa, Maija; Hansson, Karna; Kleja, Dan Berggren; Helmisaari, Heljä-Sisko (2014)
  • Hakkila, Matti; Abrego, Nerea; Ovaskainen, Otso; Monkkonen, Mikko (2018)
    Protected areas are meant to preserve native local communities within their boundaries, but they are not independent from their surroundings. Impoverished habitat quality in the matrix might influence the species composition within the protected areas through biotic homogenization. The aim of this study was to determine the impacts of matrix quality on species richness and trait composition of bird communities from the Finnish reserve area network and whether the communities are being subject of biotic homogenization due to the lowered quality of the landscape matrix. We used joint species distribution modeling to study how characteristics of the Finnish forest reserves and the quality of their surrounding matrix alter species and trait compositions of forest birds. The proportion of old forest within the reserves was the main factor in explaining the bird community composition, and the bird communities within the reserves did not strongly depend on the quality of the matrix. Yet, in line with the homogenization theory, the beta-diversity within reserves embedded in low-quality matrix was lower than that in high-quality matrix, and the average abundance of regionally abundant species was higher. Influence of habitat quality on bird community composition was largely explained by the species' functional traits. Most importantly, the community specialization index was low, and average body size was high in areas with low proportion of old forest. We conclude that for conserving local bird communities in northern Finnish protected forests, it is currently more important to improve or maintain habitat quality within the reserves than in the surrounding matrix. Nevertheless, we found signals of bird community homogenization, and thus, activities that decrease the quality of the matrix are a threat for bird communities.
  • Knyazikhin, Yuri; Schull, Mitchell A.; Stenberg, Pauline; Mõttus, Matti; Rautiainen, Miina; Yang, Yan; Marshak, Alexander; Latorre Carmona, Pedro; Kaufmann, Robert K.; Lewis, Philip; Disney, Mathias I.; Vanderbilt, Vern; Davis, Anthony B.; Baret, Frederic; Jacquemoud, Stephane; Lyapustin, Alexei; Myneni, Ranga B. (2013)
  • Jogiste, Kalev; Frelich, Lee E.; Laarmann, Diana; Vodde, Floortje; Baders, Endijs; Donis, Janis; Jansons, Arts; Kangur, Ahto; Korjus, Henn; Köster, Kajar; Kusmin, Jurgen; Kuuluvainen, Timo; Marozas, Vitas; Metslaid, Marek; Metslaid, Sandra; Polyachenko, Olga; Poska, Anneli; Rebane, Sille; Stanturf, John A. (2018)
    In the Baltic States region, anthropogenic disturbances at different temporal and spatial scales mostly determine dynamics and development phases of forest ecosystems. We reviewed the state and condition of hemiboreal forests of the Baltic States region and analyzed species composition of recently established and permanent forest (PF). Agricultural deforestation and spontaneous or artificial conversion back to forest is a scenario leading to ecosystems designated as recent forest (RF, age up to two hundred years). Permanent forest (PF) was defined as areas with no records of agricultural activity during the last 200 yr, including mostly forests managed by traditional even-aged (clear-cut) silviculture and salvage after natural disturbances. We hypothesized that RF would have distinctive composition, with higher dominance by hardwoods (e.g., aspen and birch), compared to PF. Ordination revealed divergence in the RF stands; about half had the hypothesized composition distinct from PF, with a tight cluster of stands in the part of the ordination space with high hardwood dominance, while the remaining RF stands were scattered throughout the ordination space occupied by PF with highly variable species composition. Planting of conifers, variability in site quality, and variability in spatial proximity to PF with relatively natural ecosystem legacies likely explained the variable compositions of this latter group of RF. We positioned the observations of RF in a classic quantification of site type conditions (based on Estonian forest vegetation survey previously carried out by LA mu hmus), which indicated that RF was more likely to occur on areas of higher soil fertility (in ordination space). Climatic and anthropogenic changes to RF create complex dynamic trends that are difficult to project into the future. Further research in tracing land use changes (using pollen analysis and documented evidence) should be utilized to refine the conceptual framework of ecosystem legacy and memory. Occurrence and frequency of deforestation and its characteristics as a novel disturbance regime are of particular interest.