Browsing by Subject "BOREAL-FOREST"

Sort by: Order: Results:

Now showing items 1-10 of 10
  • Qi, X. M.; Ding, A. J.; Nie, W.; Petäjä, T.; Kerminen, V. -M.; Herrmann, E.; Xie, Y. N.; Zheng, L. F.; Manninen, H.; Aalto, P.; Sun, J. N.; Xu, Z. N.; Chi, X. G.; Huang, X.; Boy, M.; Virkkula, A.; Yang, X. -Q.; Fu, C. B.; Kulmala, M. (2015)
    Aerosol particles play important roles in regional air quality and global climate change. In this study, we analyzed 2 years (2011-2013) of measurements of submicron particles (6-800 nm) at a suburban site in the western Yangtze River Delta (YRD) of eastern China. The number concentrations (NCs) of particles in the nucleation, Aitken and accumulation modes were 5300 +/- 5500, 8000 +/- 4400, 5800 +/- 3200 cm(-3), respectively. The NCs of total particles are comparable to those at urban/suburban sites in other Chinese megacities, such as Beijing, but about 10 times higher than in the remote western China. Long-range and regional transport largely influenced number concentrations and size distributions of submicron particles. The highest and lowest accumulation-mode particle number concentrations were observed in air masses from the YRD and coastal regions, respectively. Continental air masses from inland brought the highest concentrations of nucleation-mode particles. New particle formation (NPF) events, apparent in 44% of the effective measurement days, occurred frequently in all the seasons except winter. The frequency of NPF in spring, summer and autumn is much higher than other measurement sites in China. Sulfuric acid was found to be the main driver of NPF events. The particle formation rate was the highest in spring (3.6 +/- 2.4 cm(-3) s(-1)), whereas the particle growth rate had the highest values in summer (12.8 +/- 4.4 nm h(-1)). The formation rate was typically high in relatively clean air masses, whereas the growth rate tended to be high in the polluted YRD air masses. The frequency of NPF events and the particle growth rates showed a strong year-to-year difference. In the summer of 2013, associated with a multi-week heat wave and strong photochemical processes, NPF events occurred with larger frequency and higher growth rates compared with the same period in 2012. The difference in the location and strength of the subtropical high pressure system, which influences the air mass transport pathways and solar radiation, seems to be the cause for year-to-year differences. This study reports, up to now, the longest continuous measurement records of submicron particles in eastern China and helps to achieve a comprehensive understanding of the main factors controlling the seasonal and year-to-year variation of the aerosol size distribution and NPF in this region.
  • Mohr, Claudia; Lopez-Hilfiker, Felipe D.; Yli-Juuti, Taina; Heitto, Arto; Lutz, Anna; Hallquist, Mattias; D'Ambro, Emma L.; Rissanen, Matti P.; Hao, Liqing; Schobesberger, Siegfried; Kulmala, Markku; Mauldin III, Roy L.; Makkonen, Ulla; Sipilä, Mikko; Petäjä, Tuukka; Thornton, Joel A. (2017)
    We present ambient observations of dimeric monoterpene oxidation products (C16-20HyO6-9) in gas and particle phases in the boreal forest in Finland in spring 2013 and 2014, detected with a chemical ionization mass spectrometer with a filter inlet for gases and aerosols employing acetate and iodide as reagent ions. These are among the first online dual-phase observations of such dimers in the atmosphere. Estimated saturation concentrations of 10(-15) to 10(-6)mu gm(-3) (based on observed thermal desorptions and group-contribution methods) and measured gas-phase concentrations of 10(-3) to 10(-2)mu gm(-3) (similar to 10(6)-10(7)moleculescm(-3)) corroborate a gas-phase formation mechanism. Regular new particle formation (NPF) events allowed insights into the potential role dimers may play for atmospheric NPF and growth. The observationally constrained Model for Acid-Base chemistry in NAnoparticle Growth indicates a contribution of similar to 5% to early stage particle growth from the similar to 60 gaseous dimer compounds. Plain Language Summary Atmospheric aerosol particles influence climate and air quality. We present new insights into how emissions of volatile organic compounds from trees are transformed in the atmosphere to contribute to the formation and growth of aerosol particles. We detected for the first time over a forest, a group of organic molecules, known to grow particles, in the gas phase at levels far higher than expected. Previous measurements had only measured them in the particles. This finding provides guidance on how models of aerosol formation and growth should describe their appearance and fate in the atmosphere.
  • Vana, Marko; Komsaare, Kaupo; Horrak, Urmas; Mirme, Sander; Nieminen, Tuomo; Kontkanen, Jenni; Manninen, Hanna E.; Petäjä, Tuukka; Noe, Steffen M.; Kulmala, Markku (2016)
    We analyzed the size distributions of atmospheric aerosol particles measured during 2013-2014 at Varrio (SMEAR I) in northern Finland, Hyytiala (SMEAR II) in southern Finland and Jarvselja (SMEAR-Estonia) in Estonia. The stations are located on a transect spanning from north to south over 1000 km and they represent different environments ranging from subarctic to the hemi-boreal. We calculated the characteristics of new-particle-formation events, such as the frequency of events, growth rate of nucleation mode particles, condensation and coagulation sinks, formation rate of 2 nm and 3 nm particles, and source rate of condensable vapors. We observed 59, 185 and 108 new-particle-formation events at Varrio, Hyytiala and Jarvselja, respectively. The frequency of the observed events showed an annual variation with a maximum in spring. The analysis revealed size dependence of growth rate at all locations. We found that the growth rate and source rate of a condensable vapor were the highest in Jarvselja and the lowest in Varrio. The condensation sink and particle formation rate were of a similar magnitude at Hyytiala and Jarvselja, but several times smaller at Varrio. Tracking the origin of air masses revealed that the number concentration of nucleation mode particles (3-25 nm) varied from north to south, with the highest concentrations at Jarvselja and lowest at Varrio. Trajectory analysis indicated that new-particle-formation events are large-scale phenomena that can take place concurrently at distant stations located even 1000 km apart. We found a total of 26 days with new-particle-formation events occurring simultaneously at all three stations.
  • Zaidan, Martha A.; Haapasilta, Ville; Relan, Rishi; Paasonen, Pauli; Kerminen, Veli-Matti; Junninen, Heikki; Kulmala, Markku; Foster, Adam S. (2018)
    Atmospheric new-particle formation (NPF) is a very non-linear process that includes atmospheric chemistry of precursors and clustering physics as well as subsequent growth before NPF can be observed. Thanks to ongoing efforts, now there exists a tremendous amount of atmospheric data, obtained through continuous measurements directly from the atmosphere. This fact makes the analysis by human brains difficult but, on the other hand, enables the usage of modern data science techniques. Here, we calculate and explore the mutual information (MI) between observed NPF events (measured at Hyytiala, Finland) and a wide variety of simultaneously monitored ambient variables: trace gas and aerosol particle concentrations, meteorology, radiation and a few derived quantities. The purpose of the investigations is to identify key factors contributing to the NPF. The applied mutual information method finds that the formation events are strongly linked to sulfuric acid concentration and water content, ultraviolet radiation, condensation sink (CS) and temperature. Previously, these quantities have been well-established to be important players in the phenomenon via dedicated field, laboratory and theoretical research. The novelty of this work is to demonstrate that the same results are now obtained by a data analysis method which operates without supervision and without the need of understanding the physics deeply. This suggests that the method is suitable to be implemented widely in the atmospheric field to discover other interesting phenomena and their relevant variables.
  • Tian, Xianglin; Minunno, Francesco; Cao, Tianjian; Peltoniemi, Mikko; Kalliokoski, Tuomo; Mäkelä, Annikki (2020)
    Abstract Applications of ecosystem flux models on large geographical scales are often limited by model complexity and data availability. Here, we calibrated and evaluated a semi-empirical ecosystem flux model, PRELES, for various forest types and climate conditions, based on eddy covariance data from 55 sites. A Bayesian approach was adopted for model calibration and uncertainty quantification. We applied the site-specific calibrations and multisite calibrations to nine plant functional types (PFTs) to obtain the site-specific and PFT specific parameter vectors for PRELES. A systematically designed cross-validation was implemented to evaluate calibration strategies and the risks in extrapolation. The combination of plant physiological traits and climate patterns generated significant variation in vegetation responses and model parameters across but not within PFTs, implying that applying the model without PFT-specific parameters is risky. But within PFT, the multisite calibrations performed as accurately as the site-specific calibrations in predicting gross primary production (GPP) and evapotranspiration (ET). Moreover, the variations among sites within one PFT could be effectively simulated by simply adjusting the parameter of potential light-use efficiency (LUE), implying significant convergence of simulated vegetation processes within PFT. The hierarchical modelling of PRELES provides a compromise between satellite-driven LUE and physiologically oriented approaches for extrapolating the geographical variation of ecosystem productivity. Although measurement errors of eddy covariance and remotely sensed data propagated a substantial proportion of uncertainty or potential biases, the results illustrated that PRELES could reliably capture daily variations of GPP and ET for contrasting forest types on large geographical scales if PFT-specific parameterizations were applied.
  • Arneth, Almut; Makkonen, Risto; Olin, Stefan; Paasonen, Pauli; Holst, Thomas; Kajos, Maija K.; Kulmala, Markku; Maximov, Trofim; Miller, Paul A.; Schurgers, Guy (2016)
    Disproportional warming in the northern high latitudes and large carbon stocks in boreal and (sub)arctic ecosystems have raised concerns as to whether substantial positive climate feedbacks from biogeochemical process responses should be expected. Such feedbacks occur when increasing temperatures lead, for example, to a net release of CO2 or CH4. However, temperature-enhanced emissions of biogenic volatile organic compounds (BVOCs) have been shown to contribute to the growth of secondary organic aerosol (SOA), which is known to have a negative radiative climate effect. Combining measurements in Eastern Siberia with model-based estimates of vegetation and permafrost dynamics, BVOC emissions, and aerosol growth, we assess here possible future changes in ecosystem CO2 balance and BVOC-SOA interactions and discuss these changes in terms of possible climate effects. Globally, the effects of changes in Siberian ecosystem CO2 balance and SOA formation are small, but when concentrating on Siberia and the Northern Hemisphere the negative forcing from changed aerosol direct and indirect effects become notable - even though the associated temperature response would not necessarily follow a similar spatial pattern. While our analysis does not include other important processes that are of relevance for the climate system, the CO2 and BVOC-SOA interplay serves as an example for the complexity of the interactions between emissions and vegetation dynamics that underlie individual terrestrial processes and highlights the importance of addressing ecosystem-climate feedbacks in consistent, process-based model frameworks.
  • Taipale, Ditte; Kerminen, Veli-Matti; Ehn, Mikael; Kulmala, Markku; Niinemets, Ülo (2021)
    Most trees emit volatile organic compounds (VOCs) continuously throughout their life, but the rate of emission and spectrum of emitted VOCs become substantially altered when the trees experience stress. Despite this, models to predict the emissions of VOCs do not account for perturbations caused by biotic plant stress. Considering that such stresses have generally been forecast to increase in both frequency and severity in the future climate, the neglect of stress-induced plant emissions in models might be one of the key obstacles for realistic climate change predictions, since changes in VOC concentrations are known to greatly influence atmospheric aerosol processes. Thus, we constructed a model to study the impact of biotic plant stresses on new particle formation and growth throughout a full growing season. We simulated the influence on aerosol processes caused by herbivory by the European gypsy moth (Lymantria dispar) and autumnal moth (Epirrita autumnata) feeding on pedunculate oak (Quercus robur) and mountain birch (Betula pubescens var. pumila), respectively, and also fungal infections of pedunculate oak and balsam poplar (Populus balsamifera var. suaveolens) by oak powdery mildew (Erysiphe alphitoides) and poplar rust (Melampsora larici-populina), respectively. Our modelling results indicate that all the investigated plant stresses are capable of substantially perturbing both the number and size of aerosol particles in atmospherically relevant conditions, with increases in the amount of newly formed particles by up to about an order of magnitude and additional daily growth of up to almost 50 nm. We also showed that it can be more important to account for biotic plant stresses in models for local and regional predictions of new particle formation and growth during the time of infestation or infection than significant variations in, e.g. leaf area index and temperature and light conditions, which are currently the main parameters controlling predictions of VOC emissions. Our study thus demonstrates that biotic plant stress can be highly atmospherically relevant. To validate our findings, field measurements are urgently needed to quantify the role of stress emissions in atmospheric aerosol processes and for making integration of biotic plant stress emission responses into numerical models for prediction of atmospheric chemistry and physics, including climate change projection models, possible.
  • Lampilahti, Janne; Manninen, Hanna; Leino (os. Paananen), Katri; Väänänen, Riikka; Manninen, Antti; Buenrostro Mazon, Stephany N.; Nieminen, Tuomo; Leskinen, Matti; Enroth, Joonas; Bister, Marja; Zilitinkevich, Sergej; Kangasluoma, Juha; Järvinen, Heikki; Kerminen, Veli-Matti; Petäjä, Tuukka; Kulmala, Markku (2020)
    Recent studies have shown the importance of new particle formation (NPF) to global cloud condensation nuclei (CCN) production, as well as to air pollution in megacities. In addition to the necessary presence of low-volatility vapors that can form new aerosol particles, both numerical and observational studies have shown that the dynamics of the planetary boundary layer (BL) plays an important role in NPF. Evidence from field observations suggests that roll vortices might be favorable for inducing NPF in a convective BL. However, direct observations and estimates of the potential importance of this phenomenon to the production of new aerosol particles are lacking. Here we show that rolls frequently induce NPF bursts along the horizontal circulations and that the small clusters and particles originating from these localized bursts grow in size similar to particles typically ascribed to atmospheric NPF that occur almost homogeneously at a regional scale. We outline a method to identify roll-induced NPF from measurements and, based on the collected data, estimate the impact of roll vortices on the overall aerosol particle production due to NPF at a boreal forest site (83% +/- 34% and 26% +/- 8% overall enhancement in particle formation for 3 and 10 nm particles, respectively). We conclude that the formation of roll vortices should be taken into account when estimating particle number budgets in the atmospheric BL.
  • Nieminen, T.; Yli-Juuti, T.; Manninen, H. E.; Petäjä, T.; Kerminen, V. -M.; Kulmala, M. (2015)
    New particle formation (NPF) occurs frequently in the global atmosphere. During recent years, detailed laboratory experiments combined with intensive field observations in different locations have provided insights into the vapours responsible for the initial formation of particles and their subsequent growth. In this regard, the importance of sulfuric acid, stabilizing bases such as ammonia and amines as well as extremely low volatile organics, have been proposed. The instrumentation to observe freshly formed aerosol particles has developed to a stage where the instruments can be implemented as part of airborne platforms, such as aircrafts or a Zeppelin-type airship. Flight measurements are technically more demanding and require a greater detail of planning than field studies at the ground level. The high cost of flight hours, limited time available during a single research flight for the measurements, and different instrument payloads in Zeppelin airship for various flight missions demanded an analysis tool that would forecast whether or not there is a good chance for an NPF event. Here we present a methodology to forecast NPF event probability at the SMEAR II site in Hyytiala, Finland. This methodology was used to optimize flight hours during the PEGASOS (Pan-European Gas Aerosol Climate Interaction Study)-Zeppelin Northern mission in May-June 2013. Based on the existing knowledge, we derived a method for estimating the nucleation probability that utilizes forecast air mass trajectories, weather forecasts, and air quality model predictions. With the forecast tool we were able to predict the occurrence of NPF events for the next day with more than 90% success rate (10 out of 11 NPF event days correctly predicted). To our knowledge, no similar forecasts of NPF occurrence have been developed for other sites. This method of forecasting NPF occurrence could be applied also at other locations, provided that long-term observations of conditions favouring particle formation are available.
  • Wagner, Robert; Yan, Chao; Lehtipalo, Katrianne; Duplissy, Jonathan; Nieminen, Tuomo; Kangasluoma, Juha; Ahonen, Lauri R.; Dada, Lubna; Kontkanen, Jenni; Manninen, Hanna E.; Dias, Antonio; Amorim, Antonio; Bauer, Paulus S.; Bergen, Anton; Bernhammer, Anne-Kathrin; Bianchi, Federico; Brilke, Sophia; Mazon, Stephany Buenrostro; Chen, Xuemeng; Draper, Danielle C.; Fischer, Lukas; Frege, Carla; Fuchs, Claudia; Garmash, Olga; Gordon, Hamish; Hakala, Jani; Heikkinen, Liine; Heinritzi, Martin; Hofbauer, Victoria; Hoyle, Christopher R.; Kirkby, Jasper; Kurten, Andreas; Kvashnin, Alexander N.; Laurila, Tiia; Lawler, Michael J.; Mai, Huajun; Makhmutov, Vladimir; Mauldin III, Roy L.; Molteni, Ugo; Nichman, Leonid; Nie, Wei; Ojdanic, Andrea; Onnela, Antti; Piel, Felix; Quelever, Lauriane L. J.; Rissanen, Matti P.; Sarnela, Nina; Schallhart, Simon; Sengupta, Kamalika; Simon, Mario; Stolzenburg, Dominik; Stozhkov, Yuri; Trostl, Jasmin; Viisanen, Yrjö; Vogel, Alexander L.; Wagner, Andrea C.; Xiao, Mao; Ye, Penglin; Baltensperger, Urs; Curtius, Joachim; Donahue, Neil M.; Flagan, Richard C.; Gallagher, Martin; Hansel, Armin; Smith, James N.; Tome, Antonio; Winkler, Paul M.; Worsnop, Douglas; Ehn, Mikael; Sipilä, Mikko; Kerminen, Veli-Matti; Petäjä, Tuukka; Kulmala, Markku (2017)
    The formation of secondary particles in the atmosphere accounts for more than half of global cloud condensation nuclei. Experiments at the CERN CLOUD (Cosmics Leaving OUtdoor Droplets) chamber have underlined the importance of ions for new particle formation, but quantifying their effect in the atmosphere remains challenging. By using a novel instrument setup consisting of two nanoparticle counters, one of them equipped with an ion filter, we were able to further investigate the ion-related mechanisms of new particle formation. In autumn 2015, we carried out experiments at CLOUD on four systems of different chemical compositions involving monoterpenes, sulfuric acid, nitrogen oxides, and ammonia. We measured the influence of ions on the nucleation rates under precisely controlled and atmospherically relevant conditions. Our results indicate that ions enhance the nucleation process when the charge is necessary to stabilize newly formed clusters, i.e., in conditions in which neutral clusters are unstable. For charged clusters that were formed by ion-induced nucleation, we were able to measure, for the first time, their progressive neutralization due to recombination with oppositely charged ions. A large fraction of the clusters carried a charge at 1.5 nm diameter. However, depending on particle growth rates and ion concentrations, charged clusters were largely neutralized by ion-ion recombination before they grew to 2.5 nm. At this size, more than 90% of particles were neutral. In other words, particles may originate from ion-induced nucleation, although they are neutral upon detection at diameters larger than 2.5 nm. Observations at Hyytiala, Finland, showed lower ion concentrations and a lower contribution of ion-induced nucleation than measured at CLOUD under similar conditions. Although this can be partly explained by the observation that ion-induced fractions decrease towards lower ion concentrations, further investigations are needed to resolve the origin of the discrepancy.