Browsing by Subject "BRAIN RESPONSES"

Sort by: Order: Results:

Now showing items 1-14 of 14
  • Thiede, Anja; Virtala, Paula; Ala-Kurikka, Iina; Partanen, Eino; Huotilainen, Minna; Mikkola, Kaija; Leppänen, Paavo HT; Kujala, Teija (2019)
    Objective: Identifying early signs of developmental dyslexia, associated with deficient speech-sound processing, is paramount to establish early interventions. We aimed to find early speech-sound processing deficiencies in dyslexia, expecting diminished and atypically lateralized event-related potentials (ERP) and mismatch responses (MMR) in newborns at dyslexia risk. Methods: ERPs were recorded to a pseudoword and its variants (vowel-duration, vowel-identity, and syllable-frequency changes) from 88 newborns at high or no familial risk. The response significance was tested, and group, laterality, and frontality effects were assessed with repeated-measures ANOVA. Results: An early positive and right-lateralized ERP component was elicited by standard pseudowords in both groups, the response amplitude not differing between groups. Early negative MMRs were absent in the at-risk group, and MMRs to duration changes diminished compared to controls. MMRs to vowel changes had significant laterality x group interactions resulting from right-lateralized MMRs in controls. Conclusions: The MMRs of high-risk infants were absent or diminished, and morphologically atypical, suggesting atypical neural speech-sound discrimination. Significance: This atypical neural basis for speech discrimination may contribute to impaired language development, potentially leading to future reading problems. (C) 2019 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
  • Sarkamo, Teppo; Tervaniemi, Mari; Soinila, Seppo; Autti, Taina; Silvennoinen, Heli M.; Laine, Matti; Hietanen, Marja; Pihko, Elina (2010)
    Acquired amusia is a common disorder after damage to the middle cerebral artery (MCA) territory. However, its neurocognitive mechanisms, especially the relative contribution of perceptual and cognitive factors, are still unclear. We studied cognitive and auditory processing in the amusic brain by performing neuropsychological testing as well as magnetoencephalography (MEG) measurements of frequency and duration discrimination using magnetic mismatch negativity (MMNm) recordings. Fifty-three patients with a left (n = 24) or right (n = 29) hemisphere MCA stroke (MRI verified) were investigated 1 week, 3 months, and 6 months after the stroke. Amusia was evaluated using the Montreal Battery of Evaluation of Amusia (MBEA). We found that amusia caused by right hemisphere damage (RHD), especially to temporal and frontal areas, was more severe than amusia caused by left hemisphere damage (LHD). Furthermore, the severity of amusia was found to correlate with weaker frequency MMNm responses only in amusic RHD patients. Additionally, within the RHD subgroup, the amusic patients who had damage to the auditory cortex (AC) showed worse recovery on the MBEA as well as weaker MMNm responses throughout the 6-month follow-up than the non-amusic patients or the amusic patients without AC damage. Furthermore, the amusic patients both with and without AC damage performed worse than the non-amusic patients on tests of working memory, attention, and cognitive flexibility. These findings suggest domain-general cognitive deficits to be the primary mechanism underlying amusia without AC damage whereas amusia with AC damage is associated with both auditory and cognitive deficits.
  • Virtala, Paula; Huotilainen, Minna; Lilja, Esa; Ojala, Juha; Tervaniemi, Mari (2018)
    GUITAR DISTORTION USED IN ROCK MUSIC MODIFIES a chord so that new frequencies appear in its harmonic structure. A distorted dyad (power chord) has a special role in heavy metal music due to its harmonics that create a major third interval, making it similar to amajor chord. We investigated how distortion affects cortical auditory processing of chords in musicians and nonmusicians. Electric guitar chords with or without distortion and with or without the interval of the major third (i.e., triads or dyads) were presented in an oddball design where one of them served as a repeating standard stimulus and others served as occasional deviants. This enabled the recording of event-related potentials (ERPs) of the electroencephalogram (EEG) related to deviance processing (the mismatch negativity MMN and the attention-related P3a component) in an ignore condition. MMN and P3a responses were elicited in most paradigms. Distorted chords in a non-distorted context only elicited early P3a responses. However, the power chord did not demonstrate a special role in the level of the ERPs. Earlier and larger MMN and P3a responses were elicited when distortion was modified compared to when only harmony (triad vs. dyad) was modified between standards and deviants. The MMN responses were largest when distortion and harmony deviated simultaneously. Musicians demonstrated larger P3a responses than nonmusicians. The results suggest mostly independent cortical auditory processing of distortion and harmony in Western individuals, and facilitated chord change processing in musicians compared to nonmusicians. While distortion has been used in heavy rock music for decades, this study is among the first ones to shed light on its cortical basis.
  • Poikonen, Hanna Liisa; Toiviainen, Petri; Tervaniemi, Mari Anni Irmeli (2016)
    The neural responses to simple tones and short sound sequences have been studied extensively. However, in reality the sounds surrounding us are spectrally and temporally complex, dynamic and overlapping. Thus, research using natural sounds is crucial in understanding the operation of the brain in its natural environment. Music is an excellent example of natural stimulation which, in addition to sensory responses, elicits vast cognitive and emotional processes in the brain. Here we show that the preattentive P50 response evoked by rapid increases in timbral brightness during continuous music is enhanced in dancers when compared to musicians and laymen. In dance, fast changes in brightness are often emphasized with a significant change in movement. In addition, the auditory N100 and P200 responses are suppressed and sped up in dancers, musicians and laymen when music is accompanied with a dance choreography. These results were obtained with a novel event-related potential (ERP) method for natural music. They suggest that we can begin studying the brain with long pieces of natural music using the ERP method of electroencephalography (EEG) as has already been done with functional magnetic resonance (fMRI), these two brain imaging methods complementing each other.
  • Anurova, Irina; Vetchinnikova, Svetlana; Dobrego, Aleksandra; Williams, Nitin; Mikusova, Nina; Suni, Antti; Mauranen, Anna; Palva, Satu (2022)
    Chunking language has been proposed to be vital for comprehension enabling the extraction of meaning from a continuous stream of speech. However, neurocognitive mechanisms of chunking are poorly understood. The present study investigated neural correlates of chunk boundaries intuitively identified by listeners in natural speech drawn from linguistic corpora using magneto-and electroencephalography (MEEG). In a behavioral experiment, subjects marked chunk boundaries in the excerpts intuitively, which revealed highly consistent chunk boundary markings across the subjects. We next recorded brain activity to investigate whether chunk boundaries with high and medium agreement rates elicit distinct evoked responses compared to non-boundaries. Pauses placed at chunk boundaries elicited a closure positive shift with the sources over bilateral auditory cortices. In contrast, pauses placed within a chunk were perceived as interruptions and elicited a biphasic emitted potential with sources located in the bilateral primary and non-primary auditory areas with right-hemispheric dominance, and in the right inferior frontal cortex. Furthermore, pauses placed at stronger boundaries elicited earlier and more prominent activation over the left hemisphere suggesting that brain responses to chunk boundaries of natural speech can be modulated by the relative strength of different linguistic cues, such as syntactic structure and prosody.
  • Kliuchko, Marina; Brattico, Elvira; Gold, Benjamin P.; Tervaniemi, Mari; Bogert, Brigitte; Toiviainen, Petri; Vuust, Peter (2019)
    Learning, attention and action play a crucial role in determining how stimulus predictions are formed, stored, and updated. Years-long experience with the specific repertoires of sounds of one or more musical styles is what characterizes professional musicians. Here we contrasted active experience with sounds, namely long-lasting motor practice, theoretical study and engaged listening to the acoustic features characterizing a musical style of choice in professional musicians with mainly passive experience of sounds in laypersons. We hypothesized that long-term active experience of sounds would influence the neural predictions of the stylistic features in professional musicians in a distinct way from the mainly passive experience of sounds in laypersons. Participants with different musical backgrounds were recruited: professional jazz and classical musicians, amateur musicians and non-musicians. They were presented with a musical multi-feature paradigm eliciting mismatch negativity (MMN), a prediction error signal to changes in six sound features for only 12 minutes of electroencephalography (EEG) and magnetoencephalography (MEG) recordings. We observed a generally larger MMN amplitudes-indicative of stronger automatic neural signals to violated priors-in jazz musicians (but not in classical musicians) as compared to non-musicians and amateurs. The specific MMN enhancements were found for spectral features (timbre, pitch, slide) and sound intensity. In participants who were not musicians, the higher preference for jazz music was associated with reduced MMN to pitch slide (a feature common in jazz music style). Our results suggest that long-lasting, active experience of a musical style is associated with accurate neural priors for the sound features of the preferred style, in contrast to passive listening.
  • Shekhar, Shashank; Maria, Ambika; Kotilahti, Kalle; Huotilainen, Minna; Heiskala, Juha; Tuulari, Jetro J.; Hirvi, Pauliina; Karlsson, Linnea; Karlsson, Hasse; Nissila, Ilkka (2019)
    Emotional speech is one of the principal forms of social communication in humans. In this study, we investigated neural processing of emotional speech (happy, angry, sad and neutral) in the left hemisphere of 21 two-month-old infants using diffuse optical tomography. Reconstructed total hemoglobin (HbT) images were analysed using adaptive voxel-based clustering and region-of-interest (ROI) analysis. We found a distributed happy > neutral response within the temporo-parietal cortex, peaking in the anterior temporal cortex; a negative HbT response to emotional speech (the average of the emotional speech conditions <baseline) in the temporo-parietal cortex, neutral > angry in the anterior superior temporal sulcus (STS), happy > angry in the superior temporal gyrus and posterior superior temporal sulcus, angry <baseline in the insula, superior temporal sulcus and superior temporal gyrus and happy <baseline in the anterior insula. These results suggest that left STS is more sensitive to happy speech as compared to angry speech, indicating that it might play an important role in processing positive emotions in two-month-old infants. Furthermore, happy speech (relative to neutral) seems to elicit more activation in the temporo-parietal cortex, thereby suggesting enhanced sensitivity of temporo-parietal cortex to positive emotional stimuli at this stage of infant development.
  • Partanen, Eino; Kujala, Teija; Näätänen, Risto; Liitola, Auli; Sambeth, Anke; Huotilainen, Minna (2013)
  • Sihvonen, Aleksi J.; Särkämö, Teppo; Rodríguez-Fornells, Antoni; Ripollés, Pablo; Münte, Thomas F.; Soinila, Seppo (2019)
    The ability to perceive and produce music is a quintessential element of human life, present in all known cultures. Modern functional neuroimaging has revealed that music listening activates a large-scale bilateral network of cortical and subcortical regions in the healthy brain. Even the most accurate structural studies do not reveal which brain areas are critical and causally linked to music processing. Such questions may be answered by analysing the effects of focal brain lesions in patients' ability to perceive music. In this sense, acquired amusia after stroke provides a unique opportunity to investigate the neural architectures crucial for normal music processing. Based on the first large-scale longitudinal studies on stroke-induced amusia using modern multimodal magnetic resonance imaging (Mn) techniques, such as advanced lesion-symptom mapping, grey and white matter morphometry, tractography and functional connectivity, we discuss neural structures critical for music processing, consider music processing in light of the dual-stream model in the right hemisphere, and propose a neural model for acquired amusia.
  • Kostilainen, Kaisamari; Partanen, Eino; Mikkola, Kaija; Wikström, Valtteri; Pakarinen, Satu; Fellman, Vineta; Huotilainen, Minna (2020)
    Objective: Auditory change-detection responses provide information on sound discrimination and memory skills in infants. We examined both the automatic change-detection process and the processing of emotional information content in speech in preterm infants in comparison to full-term infants at term age. Methods: Preterm (n = 21) and full-term infants' (n = 20) event-related potentials (ERP) were recorded at term age. A challenging multi-feature mismatch negativity (MMN) paradigm with phonetic deviants and rare emotional speech sounds (happy, sad, angry), and a simple one-deviant oddball paradigm with pure tones were used. Results: Positive mismatch responses (MMR) were found to the emotional sounds and some of the phonetic deviants in preterm and full-term infants in the multi-feature MMN paradigm. Additionally, late positive MMRs to the phonetic deviants were elicited in the preterm group. However, no group differences to speech-sound changes were discovered. In the oddball paradigm, preterm infants had positive MMRs to the deviant change in all latency windows. Responses to non-speech sounds were larger in preterm infants in the second latency window, as well as in the first latency window at the left hemisphere electrodes (F3, C3). Conclusions: No significant group-level differences were discovered in the neural processing of speech sounds between preterm and full-term infants at term age. Change-detection of non-speech sounds, however, may be enhanced in preterm infants at term age. Significance: Auditory processing of speech sounds in healthy preterm infants showed similarities to full-term infants at term age. Large individual variations within the groups may reflect some underlying differences that call for further studies.
  • Thiede, A.; Parkkonen, L.; Virtala, P.; Laasonen, M.; Makela, J. P.; Kujala, T. (2020)
    Poor neural speech discrimination has been connected to dyslexia, and may represent phonological processing deficits that are hypothesized to be the main cause for reading impairments. Thus far, neural speech discrimination impairments have rarely been investigated in adult dyslexics, and even less by examining sources of neuromagnetic responses. We compared neuromagnetic speech discrimination in dyslexic and typical readers with mismatch fields (MMF) and determined the associations between MMFs and reading-related skills. We expected weak and atypically lateralized MMFs in dyslexic readers, and positive associations between readingrelated skills and MMF strength. MMFs were recorded to a repeating pseudoword /ta-ta/ with occasional changes in vowel identity, duration, or syllable frequency from 43 adults, 21 with confirmed dyslexia. Phonetic (vowel and duration) changes elicited left-lateralized MMFs in the auditory cortices. Contrary to our hypothesis, MMF source strengths or lateralization did not differ between groups. However, better verbal working memory was associated with stronger left-hemispheric MMFs to duration changes across groups, and better reading was associated with stronger right-hemispheric late MMFs across speech-sound changes in dyslexic readers. This suggests a link between neural speech processing and reading-related skills, in line with previous work. Furthermore, our findings suggest a right-hemispheric compensatory mechanism for language processing in dyslexia. The results obtained promote the use of MMFs in investigating reading-related brain processes.
  • Chen, Zuyue; Parkkonen, Lauri; Wei, Jingkuan; Dong, Jin-Run; Ma, Yuanye; Carlson, Synnöve (2018)
    Prepulse inhibition (PPI) refers to a decreased response to a startling stimulus when another weaker stimulus precedes it. Most PPI studies have focused on the physiological startle reflex and fewer have reported the PPI of cortical responses. We recorded local field potentials (LFPs) in four monkeys and investigated whether the PPI of auditory cortical responses (alpha, beta, and gamma oscillations and evoked potentials) can be demonstrated in the caudolateral belt of the superior temporal gyrus (STGcb). We also investigated whether the presence of a conspecific, which draws attention away from the auditory stimuli, affects the PPI of auditory cortical responses. The PPI paradigm consisted of Pulse-only and Prepulse + Pulse trials that were presented randomly while the monkey was alone (ALONE) and while another monkey was present in the same room (ACCOMP). The LFPs to the Pulse were significantly suppressed by the Prepulse thus, demonstrating PPI of cortical responses in the STGcb. The PPI-related inhibition of the N1 amplitude of the evoked responses and cortical oscillations to the Pulse were not affected by the presence of a conspecific. In contrast, gamma oscillations and the amplitude of the N1 response to Pulse-only were suppressed in the ACCOMP condition compared to the ALONE condition. These findings demonstrate PPI in the monkey STGcb and suggest that the PPI of auditory cortical responses in the monkey STGcb is a pre-attentive inhibitory process that is independent of attentional modulation.
  • Zora, Hatice; Riad, Tomas; Ylinen, Sari (2019)
    Swedish morphemes are classified as prosodically specified or prosodically unspecified, depending on lexical or phonological stress, respectively. Here, we investigate the allomorphy of the suffix -(i)sk, which indicates the distinction between lexical and phonological stress; if attached to a lexically stressed morpheme, it takes a non-syllabic form (-sk), whereas if attached to a phonologically stressed morpheme, an epenthetic vowel is inserted (-isk). Using mismatch negativity (MMN), we explored the neural processing of this allomorphy across lexically stressed and phonologically stressed morphemes. In an oddball paradigm, participants were occasionally presented with congruent and incongruent derivations, created by the suffix -(i)sk, within the repetitive presentation of their monomorphemic stems. The results indicated that the congruent derivation of the lexically stressed stem elicited a larger MMN than the incongruent sequences of the same stem and the derivational suffix, whereas after the phonologically stressed stem a non-significant tendency towards an opposite pattern was observed. We argue that the significant MMN response to the congruent derivation in the lexical stress condition is in line with lexical MMN, indicating a holistic processing of the sequence of lexically stressed stem and derivational suffix. The enhanced MMN response to the incongruent derivation in the phonological stress condition, on the other hand, is suggested to reflect combinatorial processing of the sequence of phonologically stressed stem and derivational suffix. These findings bring a new aspect to the dual-system approach to neural processing of morphologically complex words, namely the specification of word stress.
  • Mutanen, Tuomas P.; Kukkonen, Matleena; Nieminen, Jaakko O.; Stenroos, Matti; Sarvas, Jukka; Ilmoniemi, Risto J. (2016)
    Combined transcranial magnetic stimulation (TMS) and electroencephalography (EEG) often suffers from large muscle artifacts. Muscle artifacts can be removed using signal-space projection (SSP), but this canmake the visual interpretation of the remaining EEG data difficult. We suggest to use an additional step after SSP that we call source-informed reconstruction (SIR). SSP-SIR improves substantially the signal quality of artifactual TMS-EEG data, causing minimal distortion in the neuronal signal components. In the SSP-SIR approach, we first project out the muscle artifact using SSP. Utilizing an anatomical model and the remaining signal, we estimate an equivalent source distribution in the brain. Finally, we map the obtained source estimate onto the original signal space, again using anatomical information. This approach restores the neuronal signals in the sensor space and interpolates EEG traces onto the completely rejected channels. The introduced algorithm efficiently suppresses TMS-related muscle artifacts in EEG while retaining well the neuronal EEG topographies and signals. With the presented method, we can remove muscle artifacts from TMS-EEG data and recover the underlying brain responses without compromising the readability of the signals of interest. (C) 2016 Elsevier Inc. All rights reserved.