Browsing by Subject "BREAST-CANCER CELLS"

Sort by: Order: Results:

Now showing items 1-15 of 15
  • Rodriguez-Barrueco, Ruth; Latorre, Jessica; Devis-Jauregui, Laura; Lluch, Aina; Bonifaci, Nuria; Llobet, Francisco J.; Olivan, Mireia; Coll-Iglesias, Laura; Gassner, Katja; Davis, Meredith L.; Moreno-Navarrete, Jose M.; Castells-Nobau, Anna; Plata-Pena, Laura; Dalmau-Pastor, Miki; Horing, Marcus; Liebisch, Gerhard; Olkkonen, Vesa M.; Arnoriaga-Rodriguez, Maria; Ricart, Wifredo; Fernandez-Real, Jose M.; Silva, Jose M.; Ortega, Francisco J.; Llobet-Navas, David (2022)
    The H19X-encoded miR-424(322)/503 cluster regulates multiple cellular functions. Here, it is reported for the first time that it is also a critical linchpin of fat mass expansion. Deletion of this miRNA cluster in mice results in obesity, while increasing the pool of early adipocyte progenitors and hypertrophied adipocytes. Complementary loss and gain of function experiments and RNA sequencing demonstrate that miR-424(322)/503 regulates a conserved genetic program involved in the differentiation and commitment of white adipocytes. Mechanistically, it is demonstrated that miR-424(322)/503 targets gamma-Synuclein (SNCG), a factor that mediates this program rearrangement by controlling metabolic functions in fat cells, allowing adipocyte differentiation and adipose tissue enlargement. Accordingly, diminished miR-424(322) in mice and obese humans co-segregate with increased SNCG in fat and peripheral blood as mutually exclusive features of obesity, being normalized upon weight loss. The data unveil a previously unknown regulatory mechanism offat mass expansion tightly controlled by the miR-424(322)/503 through SNCG.
  • de Aquino, Iara Gonçalves; Bastos, Débora Campanella; Cuadra-Zelaya, Florence Juana Maria; Teixeira, Isadora Ferrari; Salo, Tuula; Coletta, Ricardo Della; Graner, Edgard (2020)
    Objective Fatty acid synthase (FASN) is overexpressed in several human cancers, including oral squamous cell carcinoma (OSCC). TVB-3166 is a recently described FASN inhibitor with antitumor effects and potential clinical relevance. The objective of this study was to evaluate the effects of TVB-3166 on OSCC cell lines. Materials and methods The OSCC cell line SCC-9 modified to express ZsGreen (ZsG) (SCC-9 ZsG) and its in vivo selected metastatic derivative LN-1A were used to evaluate anticancer properties of TVB-3166. Cell viability was determined using MTT assays and proliferation determined by cell counting in a Neubauer chamber. Cell death and cell cycle progression were analyzed by Annexin V-PE/7-ADD-PerCP labeling and PI staining, respectively. Cell migration was assayed by scratch assays and cell adhesion using myogel. Production of FASN, p-AKT, CPT1-α, and epithelial-mesenchymal transition (EMT) markers were examined by Western blotting. Results TVB-3166 significantly reduced cell viability and proliferation, promoted cell cycle arrest and apoptosis, and increased adhesion to myogel in both OSCC cell lines. Finally, the drug reduced SCC-9 ZsG migration. Conclusion Our results demonstrated that TVB-3166 has anticancer effects on both SCC-9 ZsG and its metastatic version LN-1A, which are worthy of investigation in preclinical models for OSCC.
  • Chandola, Chetan; Kalme, Sheetal; Casteleijn, Marco G.; Urtti, Arto; Neerathilingam, Muniasamy (2016)
    Aptamers are small, single-stranded oligonucleotides (DNA or RNA) that bind to their target with high specificity and affinity. Although aptamers are analogous to antibodies for a wide range of target recognition and variety of applications, they have significant advantages over antibodies. Since aptamers have recently emerged as a class of biomolecules with an application in a wide array of fields, we need to summarize the latest developments herein. In this review we will discuss about the latest developments in using aptamers in diagnostics, drug delivery and imaging. We begin with diagnostics, discussing the application of aptamers for the detection of infective agents itself, antigens/toxins (bacteria), biomarkers (cancer), or a combination. The ease of conjugation and labelling of aptamers makes them a potential tool for diagnostics. Also, due to the reduced off-target effects of aptamers, their use as a potential drug delivery tool is emerging rapidly. Hence, we discuss their use in targeted delivery in conjugation with siRNAs, nanoparticles, liposomes, drugs and antibodies. Finally, we discuss about the conjugation strategies applicable for RNA and DNA aptamers for imaging. Their stability and self-assembly after heating makes them superior over protein-based binding molecules in terms of labelling and conjugation strategies.
  • Louhimo, Riku i; Laakso, Marko; Belitskin, Denis; Klefstrom, Juha; Lehtonen, Rainer; Hautaniemi, Sampsa (2016)
    Background: Genomic alterations affecting drug target proteins occur in several tumor types and are prime candidates for patient-specific tailored treatments. Increasingly, patients likely to benefit from targeted cancer therapy are selected based on molecular alterations. The selection of a precision therapy benefiting most patients is challenging but can be enhanced with integration of multiple types of molecular data. Data integration approaches for drug prioritization have successfully integrated diverse molecular data but do not take full advantage of existing data and literature. Results: We have built a knowledge-base which connects data from public databases with molecular results from over 2200 tumors, signaling pathways and drug-target databases. Moreover, we have developed a data mining algorithm to effectively utilize this heterogeneous knowledge-base. Our algorithm is designed to facilitate retargeting of existing drugs by stratifying samples and prioritizing drug targets. We analyzed 797 primary tumors from The Cancer Genome Atlas breast and ovarian cancer cohorts using our framework. FGFR, CDK and HER2 inhibitors were prioritized in breast and ovarian data sets. Estrogen receptor positive breast tumors showed potential sensitivity to targeted inhibitors of FGFR due to activation of FGFR3. Conclusions: Our results suggest that computational sample stratification selects potentially sensitive samples for targeted therapies and can aid in precision medicine drug repositioning. Source code is available from http://csblcanges.fimm.fi/GOPredict/.
  • Olivieri, Fabiola; Ahtiainen, Maarit; Lazzarini, Raffaella; Pollanen, Eija; Capri, Miriam; Lorenzi, Maria; Fulgenzi, Gianluca; Albertini, Maria C.; Salvioli, Stefano; Alen, Markku J.; Kujala, Urho M.; Borghetti, Giulia; Babini, Lucia; Kaprio, Jaakko; Sipila, Sarianna; Franceschi, Claudio; Kovanen, Vuokko; Procopio, Antonio D. (2014)
    MiRNAs are fine-tuning modifiers of skeletal muscle regulation, but knowledge of their hormonal control is lacking. We used a co-twin case-control study design, that is, monozygotic postmenopausal twin pairs discordant for estrogen-based hormone replacement therapy (HRT) to explore estrogen-dependent skeletal muscle regulation via miRNAs. MiRNA profiles were determined from vastus lateralis muscle of nine healthy 54-62-years-old monozygotic female twin pairs discordant for HRT (median 7 years). MCF-7 cells, human myoblast cultures and mouse muscle experiments were used to confirm estrogen's causal role on the expression of specific miRNAs, their target mRNAs and proteins and finally the activation of related signaling pathway. Of the 230 miRNAs expressed at detectable levels in muscle samples, qPCR confirmed significantly lower miR-182, miR-223 and miR-142-3p expressions in HRT using than in their nonusing co-twins. Insulin/IGF-1 signaling emerged one common pathway targeted by these miRNAs. IGF-1R and FOXO3A mRNA and protein were more abundantly expressed in muscle samples of HRT users than nonusers. In vitro assays confirmed effective targeting of miR-182 and miR-223 on IGF-1R and FOXO3A mRNA as well as a dose-dependent miR-182 and miR-223 down-regulations concomitantly with up-regulation of FOXO3A and IGF-1R expression. Novel finding is the postmenopausal HRT-reduced miRs-182, miR-223 and miR-142-3p expression in female skeletal muscle. The observed miRNA-mediated enhancement of the target genes' IGF-1R and FOXO3A expression as well as the activation of insulin/IGF-1 pathway signaling via phosphorylation of AKT and mTOR is an important mechanism for positive estrogen impact on skeletal muscle of postmenopausal women.
  • Tvingsholm, Siri Amanda; Hansen, Malene Bredahl; Clemmensen, Knut Kristoffer Bundgaard; Brix, Ditte Marie; Rafn, Bo; Frankel, Lisa B.; Louhimo, Riku; Moreira, Jose; Hautaniemi, Sampsa; Gromova, Irina; Jäättelä, Marja; Kallunki, Tuula (2018)
    Cancer cells utilize lysosomes for invasion and metastasis. Myeloid Zinc Finger1 (MZF1) is an ErbB2-responsive transcription factor that promotes invasion of breast cancer cells via upregulation of lysosomal cathepsins B and L. Here we identify let-7 microRNA, a well-known tumor suppressor in breast cancer, as a direct negative regulator of MZF1. Analysis of primary breast cancer tissues reveals a gradual upregulation of MZF1 from normal breast epithelium to invasive ductal carcinoma and a negative correlation between several let-7 family members and MZF1 mRNA, suggesting that the inverse regulatory relationship between let-7 and MZF1 may play a role in the development of invasive breast cancer. Furthermore, we show that MZF1 regulates lysosome trafficking in ErbB2-positive breast cancer cells. In line with this, MZF1 depletion or let-7 expression inhibits invasion-promoting anterograde trafficking of lysosomes and invasion of ErbB2-expressing MCF7 spheres. The results presented here link MZF1 and let-7 to lysosomal processes in ErbB2-positive breast cancer cells that in non-cancerous cells have primarily been connected to the transcription factor EB. Identifying MZF1 and let-7 as regulators of lysosome distribution in invasive breast cancer cells, uncouples cancer-associated, invasion-promoting lysosomal alterations from normal lysosomal functions and thus opens up new possibilities for the therapeutic targeting of cancer lysosomes.
  • Tatti, Olga; Arjama, Mariliina; Ranki, Annamari; Weiss, Stephen J.; Keski-Oja, Jorma; Lehti, Kaisa (2011)
  • Juurikka, K.; Dufour, A.; Pehkonen, K.; Mainoli, B.; Campioni Rodrigues, P.; Solis, N.; Klein, T.; Nyberg, P.; Overall, C. M.; Salo, T.; Åström, P. (2021)
    Matrix metalloproteinases (MMPs) modify bioactive factors via selective processing or degradation resulting in tumour-promoting or tumour-suppressive effects, such as those by MMP8 in various cancers. We mapped the substrates of MMP8 to elucidate its previously shown tumour-protective role in oral tongue squamous cell carcinoma (OTSCC). MMP8 overexpressing (+) HSC-3 cells, previously demonstrated to have reduced migration and invasion, showed enhanced cell-cell adhesion. By analysing the secretomes of MMP8 + and control cells with terminal amine isotopic labelling of substrates (TAILS) coupled with liquid chromatography and tandem mass spectrometry (LC-MS/MS), we identified 36 potential substrates of MMP8, including FXYD domain-containing ion transport regulator 5 (FXYD5). An anti-adhesive glycoprotein FXYD5 has been previously shown to predict poor survival in OTSCC. Cleavage of FXYD5 by MMP8 was confirmed using recombinant proteins. Furthermore, we detected a loss of FXYD5 levels on cell membrane of MMP8 + cells, which was rescued by inhibition of the proteolytic activity of MMP8. Silencing (si) FXYD5 increased the cell-cell adhesion of control but not that of MMP8 + cells. siFXYD5 diminished the viability and motility of HSC-3 cells independent of MMP8 and similar effects were seen in another tongue cancer cell line, SCC-25. FXYD5 is a novel substrate of MMP8 and reducing FXYD5 levels either with siRNA or cleavage by MMP8 increases cell adhesion leading to reduced motility. FXYD5 being a known prognostic factor in OTSCC, our findings strengthen its potential as a therapeutic target.
  • Viluksela, Matti; Pohjanvirta, Raimo (2019)
    Dioxins are ubiquitous and persistent environmental contaminants whose background levels are still reason for concern. There is mounting evidence from both epidemiological and experimental studies that paternal exposure to the most potent congener of dioxins, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), can lower the male/female ratio of offspring. Moreover, in laboratory rodents and zebrafish, TCDD exposure of parent animals has been reported to result in reduced reproductive performance along with other adverse effects in subsequent generations, foremost through the paternal but also via the maternal germline. These impacts have been accompanied by epigenetic alterations in placenta and/or sperm cells, including changes in methylation patterns of imprinted genes. Here, we review recent key studies in this field with an attempt to provide an up-to-date picture of the present state of knowledge to the reader. These studies provide biological plausibility for the potential of dioxin exposure at a critical time-window to induce epigenetic alterations across multiple generations and the significance of aryl hydrocarbon receptor (AHR) in mediating these effects. Currently available data do not allow to accurately estimate the human health implications of these findings, although epidemiological evidence on lowered male/female ratio suggests that this effect may take place at realistic human exposure levels.
  • Balistreri, Giuseppe; Viiliainen, Johanna; Turunen, Mikko; Diaz, Raquel; Lyly, Lauri; Pekkonen, Pirita; Rantala, Juha; Ojala, Krista; Sarek, Grzegorz; Teesalu, Mari; Denisova, Oxana; Peltonen, Karita; Julkunen, Ilkka; Varjosalo, Markku; Kainov, Denis; Kallioniemi, Olli; Laiho, Marikki; Taipale, Jussi; Hautaniemi, Sampsa; Ojala, Paivi M. (2016)
    Kaposi's sarcoma herpesvirus (KSHV) causes Kaposi's sarcoma and certain lymphoproliferative malignancies. Latent infection is established in the majority of tumor cells, whereas lytic replication is reactivated in a small fraction of cells, which is important for both virus spread and disease progression. A siRNA screen for novel regulators of KSHV reactivation identified the E3 ubiquitin ligase MDM2 as a negative regulator of viral reactivation. Depletion of MDM2, a repressor of p53, favored efficient activation of the viral lytic transcription program and viral reactivation. During lytic replication cells activated a p53 response, accumulated DNA damage and arrested at G2-phase. Depletion of p21, a p53 target gene, restored cell cycle progression and thereby impaired the virus reactivation cascade delaying the onset of virus replication induced cytopathic effect. Herpesviruses are known to reactivate in response to different kinds of stress, and our study now highlights the molecular events in the stressed host cell that KSHV has evolved to utilize to ensure efficient viral lytic replication.
  • He, Liye; Tang, Jing; Andersson, Emma I.; Timonen, Sanna; Koschmieder, Steffen; Wennerberg, Krister; Mustjoki, Satu; Aittokallio, Tero (2018)
    The molecular pathways that drive cancer progression and treatment resistance are highly redundant and variable between individual patients with the same cancer type. To tackle this complex rewiring of pathway cross-talk, personalized combination treatments targetingmultiple cancer growth and survival pathways are required. Here we implemented a computational-experimental drug combination prediction and testing (DCPT) platform for efficient in silico prioritization and ex vivo testing in patient-derived samples to identify customized synergistic combinations for individual cancer patients. DCPT used drug-target interaction networks to traverse the massive combinatorial search spaces among 218 compounds (a total of 23,653 pairwise combinations) and identified cancer-selective synergies by using differential single-compound sensitivity profiles between patient cells and healthy controls, hence reducing the likelihood of toxic combination effects. A polypharmacology-based machine learning modeling and network visualization made use of baseline genomic and molecular profiles to guide patient-specific combination testing and clinical translation phases. Using T-cell prolymphocytic leukemia (T-PLL) as a first case study, we show how the DCPT platform successfully predicted distinct synergistic combinations for each of the three T-PLL patients, each presenting with different resistance patterns and synergy mechanisms. In total, 10 of 24 (42%) of selective combination predictions were experimentally confirmed to show synergy in patient-derived samples ex vivo. The identified selective synergies among approved drugs, including tacrolimus and temsirolimus combined with BCL-2 inhibitor venetoclax, may offer novel drug repurposing opportunities for treating T-PLL. Significance: An integrated use of functional drug screening combined with genomic and molecular profiling enables patient-customized prediction and testing of drug combination synergies for T-PLL patients. (C) 2018 AACR.
  • Yan, Yan; Ollila, Saara; Wong, Iris P. L.; Vallenius, Tea; Palvimo, Jorma J.; Vaahtomeri, Kari; Mäkelä, Tomi (2015)
    AMP-activated protein kinase (AMPK) inhibits several anabolic pathways such as fatty acid and protein synthesis, and identification of AMPK substrate specificity would be useful to understand its role in particular cellular processes and develop strategies to modulate AMPK activity in a substrate-specific manner. Here we show that SUMOylation of Z attenuates AMPK activation specifically towards mTORC1 signalling. SUMOylation is also important for rapid inactivation of AMPK, to allow prompt restoration of mTORC1 signalling. PIAS4 and its SUMO E3 ligase activity are specifically required for the AMPK alpha 1 SUMOylation and the inhibition of AMPK alpha 1 activity towards mTORC1 signalling. The activity of a SUMOylation-deficient AMPK alpha 1a mutant is higher than the wild type towards mTORC1 signalling when reconstituted in AMPKa-deficient cells. PIAS4 depletion reduced growth of breast cancer cells, specifically when combined with direct AMPK activator A769662, suggesting that inhibiting AMPK alpha 1 SUMOylation can be explored to modulate AMPK activation and thereby suppress cancer cell growth.
  • Haltia, Ulla-Maija; Andersson, Noora; Yadav, Bhagwan; Farkkila, Anniina; Kulesskiy, Evgeny; Kankainen, Matti; Tang, Jing; Butzow, Ralf; Riska, Annika; Leminen, Arto; Heikinheimo, Markku; Kallioniemi, Olli; Unkila-Kallio, Leila; Wennerberg, Krister; Aittokallio, Tero; Anttonen, Mikko (2017)
    Objective. Resistance to standard chemotherapy poses a major clinical problem in the treatment of ovarian cancer patients. Adult-type granulosa cell tumor (AGCT) is a unique ovarian cancer subtype for which efficient treatment options are lacking in advanced disease. To this end, systematic drug response and transcriptomics profiling were performed to uncover new therapy options for AGCTs. Methods. The responses of three primary and four recurrent AGCTs to 230 anticancer compounds were screened in vitro using a systematic drug sensitivity and resistance testing (DSRT) platform, coupled with mRNA sequencing. The responses of the AGCTs were compared with those of human granulosa luteal cells and bone marrow mononuclear cells. Results. Patient-derived AGCT cells showed selective sensitivity to the Src family tyrosine kinase inhibitor dasatinib. A combination of either dasatinib or an mTOR-inhibitor everolimus with paclitaxel resulted in synergistic inhibition of AGCT cell viability. The key kinase targets of dasatinib and members of the mTOR pathway were constantly expressed at mRNA and protein levels, indicating multikinase signal addictions in the AGCT cells. Transcriptomic characterization of the tumors revealed no known oncogenic mutations, suggesting that the drug sensitivity of AGCTs was rather conveyed by selective target expression. Conclusions. We used a systematic functional approach to reveal novel treatment options for a unique gynecological cancer. The selective synergy found between taxanes and dasatinib or mTOR inhibitors warrants further clinical investigations of these combinations in relapsed or aggressive AGCTs and demonstrate that high throughput drug screening and molecular profiling can provide an effective approach to uncover new therapy options. (C) 2016 Elsevier Inc. All rights reserved.
  • Astrom, Pirjo; Juurikka, Krista; Hadler-Olsen, Elin S.; Svineng, Gunbjorg; Cervigne, Nilva K.; Coletta, Ricardo D.; Risteli, Juha; Kauppila, Joonas H.; Skarp, Sini; Kuttner, Samuel; Oteiza, Ana; Sutinen, Meeri; Salo, Tuula (2017)
    Background: Matrix metalloproteinase-8 (MMP-8) has oncosuppressive properties in various cancers. We attempted to assess MMP-8 function in oral tongue squamous cell carcinoma (OTSCC). Methods: MMP-8 overexpressing OTSCC cells were used to study the effect of MMP-8 on proliferation, apoptosis, migration, invasion and gene and protein expression. Moreover, MMP-8 functions were assessed in the orthotopic mouse tongue cancer model and by immunohistochemistry in patient samples. Results: MMP-8 reduced the invasion and migration of OTSCC cells and decreased the expression of MMP-1, cathepsin-K and vascular endothelial growth factor-C (VEGF-C). VEGF-C was induced by transforming growth factor-beta 1 (TGF-beta 1) in control cells, but not in MMP-8 overexpressing cells. In human OTSCC samples, low MMP-8 in combination with high VEGF-C was an independent predictor of poor cancer-specific survival. TGF-beta 1 treatment also restored the migration of MMP-8 overexpressing cells to the level of control cells. In mouse tongue cancer, MMP-8 did not inhibit metastasis, possibly because it was eliminated in the peripheral carcinoma cells. Conclusions: The suppressive effects of MMP-8 in OTSCC may be mediated through interference of TGF-beta 1 and VEGF-C function and altered proteinase expression. Together, low MMP-8 and high VEGF-C expression have strong independent prognostic value in OTSCC.
  • Kaerki, Tytti; Rajakylae, Eeva Kaisa; Acheva, Anna; Tojkander, Sari (2020)
    Epithelial integrity is lost upon cancer progression as cancer cells detach from the primary tumor site and start to invade to the surrounding tissues. Invasive cancers of epithelial origin often express altered levels of TRP-family cation channels. Upregulation of TRPV6 Ca2+-channel has been associated with a number of human malignancies and its high expression in breast cancer has been linked to both proliferation and invasive disease. The mechanisms behind the potential of TRPV6 to induce invasive progression have, however, not been well elucidated. Here we show that TRPV6 is connected to both E-cadherin-based adherens junctions and intracellular cytoskeletal structures. Loss of TRPV6 from normal mammary epithelial cells led to disruption of epithelial integrity and abnormal 3D-mammo sphere morphology. Furthermore, expression level of TRPV6 was tightly linked to the levels of common EMT markers, suggesting that TRPV6 may have a role in the mesenchymal invasion of breast cancer cells. Thus, either too low or too high TRPV6 levels compromise homeostasis of the mammary epithelial sheets and may promote the progression of pathophysiological conditions.