Sort by: Order: Results:

Now showing items 1-2 of 2
  • Balogh, Michael L.; Mcgee, Sean L.; Mok, Angus; Muzzin, Adam; van der Burg, Remco F. J.; Bower, Richard G.; Finoguenov, Alexis; Hoekstra, Henk; Lidman, Chris; Mulchaey, John S.; Noble, Allison; Parker, Laura C.; Tanaka, Masayuki; Wilman, David J.; Webb, Tracy; Wilson, Gillian; Yee, Howard K. C. (2016)
    We present an analysis of galaxies in groups and clusters at 0.8 <z <1.2, from the GCLASS and GEEC2 spectroscopic surveys. We compute a 'conversion fraction' f(convert) that represents the fraction of galaxies that were prematurely quenched by their environment. For massive galaxies, M-star > 10(10.3) M-circle dot, we find f(convert) similar to 0.4 in the groups and similar to 0.6 in the clusters, similar to comparable measurements at z = 0. This means the time between first accretion into a more massive halo and final star formation quenching is t(p) similar to 2 Gyr. This is substantially longer than the estimated time required for a galaxy's star formation rate to become zero once it starts to decline, suggesting there is a long delay time during which little differential evolution occurs. In contrast with local observations we find evidence that this delay time-scale may depend on stellarmass, with t(p) approaching t(Hubble) for M-star similar to 10(9.5) M-circle dot. The result suggests that the delay time must not only be much shorter than it is today, but may also depend on stellar mass in a way that is not consistent with a simple evolution in proportion to the dynamical time. Instead, we find the data are well-matched by a model in which the decline in star formation is due to 'overconsumption', the exhaustion of a gas reservoir through star formation and expulsion via modest outflows in the absence of cosmological accretion. Dynamical gas removal processes, which are likely dominant in quenching newly accreted satellites today, may play only a secondary role at z = 1.
  • Mattila, K.; Väisänen, P.; Lehtinen, K.; von Appen-Schnur, G.; Leinert, Ch. (2017)
    In a project aimed at measuring the optical extragalactic background light (EBL), we are using the shadow of a dark cloud. We have performed, with the ESO VLT/FORS, spectrophotometry of the surface brightness towards the high-galactic-latitude dark cloud Lynds 1642. A spectrum representing the difference between the opaque core of the cloud and several unobscured positions around the cloud was presented in Paper I. The topic of this paper is the separation of the scattered starlight from the dark cloud itself which is the only remaining foreground component in this difference. While the scattered starlight spectrum has the characteristic Fraunhofer lines and the discontinuity at 400 nm, typical of integrated light of galaxies, the EBL spectrum is a smooth one without these features. As template for the scattered starlight, we make use of the spectra at two semitransparent positions. The resulting EBL intensity at 400 nm is I-EBL = 2.9 +/- 1.1 10(-9) erg cm(-2) s(-1) sr(-1) angstrom(-1) or 11.6 +/- 4.4 nW m(-2) sr(-1), which represents a 2.6 sigma detection; the scaling uncertainty is +20 per cent/-16 per cent. At 520 nm, we have set a 2 sigma upper limit of I-EBL