Browsing by Subject "BROCAS AREA"

Sort by: Order: Results:

Now showing items 1-4 of 4
  • Pallesen, Karen Johanne; Brattico, Elvira; Bailey, Christopher J.; Korvenoja, Antti; Koivisto, Juha; Gjedde, Albert; Carlson, Synnove (2010)
    Musical competence may confer cognitive advantages that extend beyond processing of familiar musical sounds. Behavioural evidence indicates a general enhancement of both working memory and attention in musicians. It is possible that musicians, due to their training, are better able to maintain focus on task-relevant stimuli, a skill which is crucial to working memory. We measured the blood oxygenation-level dependent (BOLD) activation signal in musicians and non-musicians during working memory of musical sounds to determine the relation among performance, musical competence and generally enhanced cognition. All participants easily distinguished the stimuli. We tested the hypothesis that musicians nonetheless would perform better, and that differential brain activity would mainly be present in cortical areas involved in cognitive control such as the lateral prefrontal cortex. The musicians performed better as reflected in reaction times and error rates. Musicians also had larger BOLD responses than non-musicians in neuronal networks that sustain attention and cognitive control, including regions of the lateral prefrontal cortex, lateral parietal cortex, insula, and putamen in the right hemisphere, and bilaterally in the posterior dorsal prefrontal cortex and anterior cingulate gyrus. The relationship between the task performance and the magnitude of the BOLD response was more positive in musicians than in non-musicians, particularly during the most difficult working memory task. The results confirm previous findings that neural activity increases during enhanced working memory performance. The results also suggest that superior working memory task performance in musicians rely on an enhanced ability to exert sustained cognitive control. This cognitive benefit in musicians may be a consequence of focused musical training.
  • Salo, Karita S.-T.; Mutanen, Tuomas P.; Vaalto, Selja M. I.; Ilmoniemi, Risto J. (2020)
    The combination of transcranial magnetic stimulation (TMS) and electroencephalography (EEG) is commonly applied for studying the effective connectivity of neuronal circuits. The stimulation excites neurons, and the resulting TMS-evoked potentials (TEPs) are recorded with EEG. A serious obstacle in this method is the generation of large muscle artifacts from scalp muscles, especially when frontolateral and temporoparietal, such as speech, areas are stimulated. Here, TMS–EEG data were processed with the signal-space projection and source-informed reconstruction (SSP–SIR) artifact-removal methods to suppress these artifacts. SSP–SIR suppressed muscle artifacts according to the difference in frequency contents of neuronal signals and muscle activity. The effectiveness of SSP–SIR in rejecting muscle artifacts and the degree of excessive attenuation of brain EEG signals were investigated by comparing the processed versions of the recorded TMS–EEG data with simulated data. The calculated individual lead-field matrix describing how the brain signals spread on the cortex were used as simulated data. We conclude that SSP–SIR was effective in suppressing artifacts also when frontolateral and temporoparietal cortical sites were stimulated, but it may have suppressed also the brain signals near the stimulation site. Effective connectivity originating from the speech-related areas may be studied even when speech areas are stimulated at least on the contralateral hemisphere where the signals were not suppressed that much.
  • Leminen, Alina; Smolka, Eva; Duñabeitia, Jon A.; Pliatsikas, Christos (2019)
    There is considerable behavioral evidence that morphologically complex words such as ‘tax-able’ and ‘kiss-es’ are processed and represented combinatorially. In other words, they are decomposed into their constituents ‘tax’ and ‘-able’ during comprehension (reading or listening), and producing them might also involve on–the–spot combination of these constituents (especially for inflections). However, despite increasing amount of neurocognitive research, the neural mechanisms underlying these processes are still not fully understood. The purpose of this critical review is to offer a comprehensive overview on the state-of-the-art of the research on the neural mechanisms of morphological processing. In order to take into account all types of complex words, we include findings on inflected, derived, and compound words presented both visually and aurally. More specifically, we cover a wide range of electro- and magnetoencephalography (EEG and MEG, respectively) as well as structural/functional magnetic resonance imaging (s/fMRI) studies that focus on morphological processing. We present the findings with respect to the temporal course and localization of morphologically complex word processing. We summarize the observed findings, their interpretations with respect to current psycholinguistic models, and discuss methodological approaches as well as their possible limitations.
  • Vidakovic, Maja Rogic; Jerkovic, Ana; Juric, Tomislav; Vujovic, Igor; Soda, Josko; Erceg, Nikola; Bubic, Andreja; Schonwald, Marina Zmajevic; Lioumis , Pantelis; Gabelica, Dragan; Dogas, Zoran (2016)
    Transcranial magnetic stimulation studies have so far reported the results of mapping the primary motor cortex (M1) for hand and tongue muscles in stuttering disorder. This study was designed to evaluate the feasibility of repetitive navigated transcranial magnetic stimulation (rTMS) for locating the M1 for laryngeal muscle and premotor cortical area in the caudal opercular part of inferior frontal gyrus, corresponding to Broca's area in stuttering subjects by applying new methodology for mapping these motor speech areas. Sixteen stuttering and eleven control subjects underwent rTMS motor speech mapping using modified patterned rTMS. The subjects performed visual object naming task during rTMS applied to the (a) left M1 for laryngeal muscles for recording corticobulbar motor-evoked potentials (CoMEP) from cricothyroid muscle and (b) left premotor cortical area in the caudal opercular part of inferior frontal gyrus while recording long latency responses (LLR) from cricothyroid muscle. The latency of CoMEP in control subjects was 11.75 +/- A 2.07 ms and CoMEP amplitude was 294.47 +/- A 208.87 A mu V, and in stuttering subjects CoMEP latency was 12.13 +/- A 0.75 ms and 504.64 +/- A 487.93 A mu V CoMEP amplitude. The latency of LLR in control subjects was 52.8 +/- A 8.6 ms and 54.95 +/- A 4.86 in stuttering subjects. No significant differences were found in CoMEP latency, CoMEP amplitude, and LLR latency between stuttering and control-fluent speakers. These results indicate there are probably no differences in stuttering compared to controls in functional anatomy of the pathway used for transmission of information from premotor cortex to the M1 cortices for laryngeal muscle representation and from there via corticobulbar tract to laryngeal muscles.