Browsing by Subject "BUTTERFLIES"

Sort by: Order: Results:

Now showing items 1-10 of 10
  • Byers, Kelsey J. R. P.; Darragh, Kathy; Musgrove, Jamie; Abondano Almeida, Diana; Fernanda Garza, Sylvia; Warren, Ian A.; Rastas, Pasi M.; Kucka, Marek; Chan, Yingguang Frank; Merrill, Richard M.; Schulz, Stefan; Owen McMillan, W.; Jiggins, Chris D. (2020)
    Understanding the production, response, and genetics of signals used in mate choice can inform our understanding of the evolution of both intraspecific mate choice and reproductive isolation. Sex pheromones are important for courtship and mate choice in many insects, but we know relatively little of their role in butterflies. The butterfly Heliconius melpomene uses a complex blend of wing androconial compounds during courtship. Electroantennography in H. melpomene and its close relative Heliconius cydno showed that responses to androconial extracts were not species specific. Females of both species responded equally strongly to extracts of both species, suggesting conservation of peripheral nervous system elements across the two species. Individual blend components provoked little to no response, with the exception of octadecanal, a major component of the H. melpomene blend. Supplementing octadecanal on the wings of octadecanal-rich H. melpomene males led to an increase in the time until mating, demonstrating the bioactivity of octadecanal in Heliconius. Using quantitative trait locus (QTL) mapping, we identified a single locus on chromosome 20 responsible for 41% of the parental species' difference in octadecanal production. This QTL does not overlap with any of the major wing color or mate choice loci, nor does it overlap with known regions of elevated or reduced F-ST. A set of 16 candidate fatty acid biosynthesis genes lies underneath the QTL. Pheromones in Heliconius carry information relevant for mate choice and are under simple genetic control, suggesting they could be important during speciation.
  • Hällfors, Maria H.; Pöyry, Juha; Heliölä, Janne; Kohonen, Ilmari; Kuussaari, Mikko; Leinonen, Reima; Schmucki, Reto; Sihvonen, Pasi; Saastamoinen, Marjo (2021)
    Species can adapt to climate change by adjusting in situ or by dispersing to new areas, and these strategies may complement or enhance each other. Here, we investigate temporal shifts in phenology and spatial shifts in northern range boundaries for 289 Lepidoptera species by using long-term data sampled over two decades. While 40% of the species neither advanced phenology nor moved northward, nearly half (45%) used one of the two strategies. The strongest positive population trends were observed for the minority of species (15%) that both advanced flight phenology and shifted their northern range boundaries northward. We show that, for boreal Lepidoptera, a combination of phenology and range shifts is the most viable strategy under a changing climate. Effectively, this may divide species into winners and losers based on their propensity to capitalize on this combination, with potentially large consequences on future community composition.
  • Heikkila, Maria; Mutanen, Marko; Wahlberg, Niklas; Sihvonen, Pasi; Kaila, Lauri (2015)
    Background: Ditrysia comprise close to 99 % of all butterflies and moths. The evolutionary relationships among the ditrysian superfamilies have received considerable attention in phylogenetic studies based on DNA and transcriptomic data, but the deepest divergences remain for large parts unresolved or contradictory. To obtain complementary insight into the evolutionary history of the clade, and to test previous hypotheses on the subdivision of Ditrysia based on morphology, we examine the morphology of larvae, pupae and adult males and females of 318 taxa representing nearly all ditrysian superfamilies and families. We present the most comprehensive morphological dataset on Ditrysia to date, consisting of over 500 morphological characters. The data are analyzed alone and combined with sequence data (one mitochondrial and seven nuclear protein-coding gene regions, sequenced from 422 taxa). The full dataset consists of 473 exemplar species. Analyses are performed using maximum likelihood methods, and parsimony methods for the morphological dataset. We explore whether combining morphological data and DNA-data can stabilize taxa that are unstable in phylogenetic studies based on genetic data only. Results: Morphological characters are found phylogenetically informative in resolving apical nodes (superfamilies and families), but characters serving as evidence of relatedness of larger assemblages are few. Results include the recovery of a monophyletic Tineoidea, Sesioidea and Cossoidea, and a stable position for some unstable taxa (e.g. Epipyropidae, Cyclotornidae, Urodoidea + Schreckensteinioidea). Several such taxa, however, remain unstable even though morphological characters indicate a position in the tree (e.g. Immidae). Evidence supporting affinities between clades are suggested, e.g. a novel larval synapomorphy for Tineidae. We also propose the synonymy of Tineodidae with Alucitidae, syn. nov. Conclusions: The large morphological dataset provides information on the diversity and distribution of morphological traits in Ditrysia, and can be used in future research on the evolution of these traits, in identification keys and in identification of fossil Lepidoptera. The "backbone" of the phylogeny for Ditrysia remains largely unresolved. As previously proposed as an explanation for the scarcity of molecular signal in resolving the deeper nodes, this may be due to the rapid radiation of Ditrysia in the Cretaceous.
  • Ovaskainen, Otso; Ramos, Danielle Leal; Slade, Eleanor M.; Merckx, Thomas; Tikhonov, Gleb; Pennanen, Juho; Pizo, Marco Aurelio; Ribeiro, Milton Cezar; Manuel Morales, Juan (2019)
    Joint species distribution modeling has enabled researchers to move from species-level to community-level analyses, leading to statistically more efficient and ecologically more informative use of data. Here, we propose joint species movement modeling (JSMM) as an analogous approach that enables inferring both species- and community-level movement parameters from multispecies movement data. The species-level movement parameters are modeled as a function of species traits and phylogenetic relationships, allowing one to ask how species traits influence movements, and whether phylogenetically related species are similar in their movement behavior. We illustrate the modeling framework with two contrasting case studies: a stochastic redistribution model for direct observations of bird movements and a spatially structured diffusion model for capture-recapture data on moth movements. In both cases, the JSMM identified several traits that explain differences in movement behavior among species, such as movement rate increasing with body size in both birds and moths. We show with simulations that the JSMM approach increases precision of species-specific parameter estimates by borrowing information from other species that are closely related or have similar traits. The JSMM framework is applicable for many kinds of data, and it facilitates a mechanistic understanding of the causes and consequences of interspecific variation in movement behavior.
  • Murillo Ramos, Leidys Del Carmen; Chazot, Nicolas; Sihvonen, Pasi; Õunap, Erki; Jiang, Nan; Han, Hongxiang; Clarke, John T.; Davis, Robert B.; Tammaru, Toomas; Wahlberg, Niklas (2021)
    Understanding how and why some groups have become more species-rich than others, and how past biogeography may have shaped their current distribution, are questions that evolutionary biologists have long attempted to answer. We investigated diversification patterns and historical biogeography of a hyperdiverse lineage of Lepidoptera, the geometrid moths, by studying its most species-rich tribe Boarmiini, which comprises ca. 200 genera and ca. known 3000 species. We inferred the evolutionary relationships of Boarmiini based on a dataset of 346 taxa, with up to eight genetic markers under a maximum likelihood approach. The monophyly of Boarmiiniis strongly supported. However, the phylogenetic position of many taxa does not agree with current taxonomy, although the monophyly of most major genera within the tribe is supported after minor adjustments. Three genera are synonymized, one new combination is proposed, and four species are placed in incertae sedis within Boarmiini. Our results support the idea of a rapid initial diversification of Boarmiini, which also implies that no major taxonomic subdivisions of the group can currently be proposed. A time-calibrated tree and biogeographical analyses suggest that boarmiines appeared in Laurasia ca. 52 Mya, followed by dispersal events throughout the Australasian, African and Neotropical regions. Most of the transcontinental dispersal events occurred in the Eocene, a period of intense geological activity and rapid climate change. Diversification analyses showed a relatively constant diversification rate for all Boarmiini, except in one clade containing the species-rich genus Cleora. The present work represents a substantial contribution towards understanding the evolutionary origin of Boarmiini moths. Our results, inevitably biased by taxon sampling, highlight the difficulties with working on species-rich groups that have not received much attention outside of Europe. Specifically, poor knowledge of the natural history of geometrids (particularly in tropical clades) limits our ability to identify key innovations underlying the diversification of boarmiines.
  • Lehikoinen, Aleksi; Virkkala, Raimo (2016)
    There is increasing evidence that climate change shifts species distributions towards poles and mountain tops. However, most studies are based on presence-absence data, and either abundance or the observation effort has rarely been measured. In addition, hardly any studies have investigated the direction of shifts and factors affecting them. Here, we show using count data on a 1000km south-north gradient in Finland, that between 1970-1989 and 2000-2012, 128 bird species shifted their densities, on average, 37km towards the north north-east. The species-specific directions of the shifts in density were significantly explained by migration behaviour and habitat type. Although the temperatures have also moved on average towards the north north-east (186km), the species-specific directions of the shifts in density and temperature did not correlate due to high variation in density shifts. Findings highlight that climate change is unlikely the only driver of the direction of species density shifts, but species-specific characteristics and human land-use practices are also influencing the direction. Furthermore, the alarming results show that former climatic conditions in the north-west corner of Finland have already moved out of the country. This highlights the need for an international approach in research and conservation actions to mitigate the impacts of climate change.
  • Heikkilä, Maria; Brown, John W.; Baixeras, Joaquin; Mey, Wolfram; Kozlov, Mikhail V. (2018)
    We re-evaluate eleven fossils that have previously been assigned to the family Tortricidae, describe one additional fossil, and assess whether observable morphological features warrant confident assignment of these specimens to this family. We provide an overview of the age and origin of the fossils and comment on their contribution towards understanding the phylogeny of the Lepidoptera. Our results show that only one specimen, Antiquatortia histuroides Brown & Baixeras gen. and sp. nov., shows a character considered synapomorphic for the family. Six other fossils (Electresia zalesskii Kusnezov, 1941; Tortricidrosis inclusa Skalski, 1973; Tortricites skalskii Kozlov, 1988; Tortricibaltia diakonoffi Skalski, 1992; Polyvena horatis Poinar and Brown, 1993 and a trace fossil purported to be larval feeding damage of Retinia resinella (Linnaeus, 1758)) exhibit a combination of homoplastic characters typical of tortricid moths or characteristic feeding damage. An unnamed species doubtfully assigned to Olethreutinae by Skalski (1992), Spatalistiforma submerga Skalski, 1992, Tortricites florissantanus (Cockerell, 1907), Tortricites destructus (Cockerell, 1916) and Tortricites sadilenkoi Kozlov, 1988 do not show enough character evidence to be convincingly placed in Tortricidae. Therefore, we transfer the three latter species from the collective group Tortricites Kozlov, 1988, defined as an assemblage of fossil leafrollers that cannot be placed with certainty in known genera, to Paleolepidopterites Kozlov, new collective group, defined as a group of fossil lepidopterans whose assignment to a certain family is currently impossible.
  • Rosa, Elena; Saastamoinen, Marjo (2017)
    Organisms with complex life-cycles acquire essential nutrients as juveniles, and hence even a short-term food stress during development can impose serious fitness costs apparent in adults. We used the Glanville fritillary butterfly to investigate the effects of larval food stress on adult performance under semi-natural conditions in a population enclosure. We were specifically interested in whether the negative effects observed were due to body mass reduction only or whether additional effects unrelated to pupal mass were evident. The two sexes responded differently to the larval food stress. In females, larval food stress reduced pupal mass and reproductive performance. The reduced reproductive performance was partially mediated by pupal mass reduction. Food stressed females also had reduced within-patch mobility, and this effect was not dependent on pupal mass. Conversely, food stress had no effect on male pupal mass, suggesting a full compensation via prolonged development time. Nonetheless, food stressed males were less likely to sire any eggs, potentially due to changes in their territorial behavior, as indicated by food stress also increasing male within-patch mobility (i.e., patrolling behavior). When males did sire eggs, the offspring number and viability were unaffected by male food stress treatment. Viability was in general higher for offspring sired by lighter males. Our study highlights how compensatory mechanisms after larval food stress can act in a sex-specific manner and that the alteration in body mass is only partially responsible for the reduced adult performance observed.
  • Valimaki, Kaisa; Linden, Andreas; Lehikoinen, Aleksi (2016)
    A multitude of studies confirm that species have changed their distribution ranges towards higher elevations and towards the poles, as has been predicted by climate change forecasts. However, there is large interspecific variation in the velocity of range shifts. From a conservation perspective, it is important to understand which factors explain variation in the speed and the extent of range shifts, as these might be related to the species' extinction risk. Here, we study shifts in the mean latitude of occurrence, as weighted by population density, in different groups of landbirds using 40 years of line transect data from Finland. Our results show that the velocity of such density shifts differed among migration strategies and increased with decreasing body size of species, while breeding habitat had no influence. The slower velocity of large species could be related to their longer generation time and lower per capita reproduction that can decrease the dispersal ability compared to smaller species. In contrast to some earlier studies of range margin shifts, resident birds and partial migrants showed faster range shifts, while fully migratory species were moving more slowly. The results suggest that migratory species, especially long-distance migrants, which often show decreasing population trends, might also have problems in adjusting their distribution ranges to keep pace with global warming.