Browsing by Subject "Basidiomycota"

Sort by: Order: Results:

Now showing items 1-16 of 16
  • Mäki, Mari; Mali, Tuulia; Hellén, Heidi; Heinonsalo, Jussi; Lundell, Taina; Bäck, Jaana (2021)
    Wood-decaying fungi in the phylum Basidiomycota play a significant role in the global carbon cycle, as they decompose deadwood effectively. Fungi may compete for utilizable substrate and growth space by producing soluble metabolites and by releasing volatile organic compounds (VOCs). We determined the role of wood substrate (Scots pine or Norway spruce) on the generation of hyphal biomass, secreted metabolites and enzyme activities, wood decomposition rate, and fungal species-species interactions on VOC release. We studied one brown-rot species (Fomitopsis pinicola) and two white-rot species (Phlebia radiata and Trichaptum abietinum) cultivated individually or in combinations. Wood substrate quality influences VOC release by the wood-decaying fungi, with signature differences caused by the decomposition trait (brown rot or white rot) and species-species interactions. VOC release was higher in the cultures of Basidiomycota than in uncolonized sawdust. Fungal biomass, decomposition activity, iron reduction, enzyme activities, oxalate anion content, and oxalic acid production explained VOC release from decaying wood.
  • Vesala, Risto; Niskanen, Tuula; Liimatainen, Kare; Boga, Hamadi; Pellikka, Petri; Rikkinen, Jouko (2017)
    Fungus-growing termites of the subfamily Macrotermitinae together with their highly specialized fungal symbionts (Termitomyces) are primary decomposers of dead plant matter in many African savanna ecosystems. The termites provide crucial ecosystem services also by modifying soil properties, translocating nutrients, and as important drivers of plant succession. Despite their obvious ecological importance, many basic features in the biology of fungus-growing termites and especially their fungal symbionts remain poorly known, and no studies have so far focused on possible habitat-level differences in symbiont diversity across heterogeneous landscapes. We studied the species identities of Macrotermes termites and their Termitomyces symbionts by excavating 143 termite mounds at eight study sites in the semiarid Tsavo Ecosystem of southern Kenya. Reference specimens were identified by sequencing the COI region from termites and the ITS region from symbiotic fungi. The results demonstrate that the regional Macrotermes community in Tsavo includes two sympatric species (M. subhyalinus and M. michaelseni) which cultivate and largely share three species of Termitomyces symbionts. A single species of fungus is always found in each termite mound, but even closely adjacent colonies of the same termite species often house evolutionarily divergent fungi. The species identities of both partners vary markedly between sites, suggesting hitherto unknown differences in their ecological requirements. It is apparent that both habitat heterogeneity and disturbance history can influence the regional distribution patterns of both partners in symbiosis.
  • Spirin, Viacheslav; Kout, Jiří (2015)
    Duportella lassa is described as a new species based on 11 collections from East Siberia and Russian Far East. It is characterized by monomitic hyphal structure, brown-colored lamprocystidia, and it inhabits dead branches, both attached and recently fallen, of the angiosperm trees and shrubs
  • Veloz Villavicencio, Eliana Estefanía; Mali, Tuulia; Mattila, Hans; Lundell, Taina (2020)
    Four well-studied saprotrophic Basidiomycota Agaricomycetes species with different decay strategies were cultivated on solid lignocellulose substrates to compare their extracellular decomposing carbohydrate-active and lignin-attacking enzyme production profiles. Two Polyporales species, the white rot fungus Phlebia radiata and brown rot fungus Fomitopsis pinicola, as well as one Agaricales species, the intermediate “grey” rot fungus Schizophyllum commune, were cultivated on birch wood pieces for 12 weeks, whereas the second Agaricales species, the litter-decomposing fungus Coprinopsis cinerea was cultivated on barley straw for 6 weeks under laboratory conditions. During 3 months of growth on birch wood, only the white rot fungus P. radiata produced high laccase and MnP activities. The brown rot fungus F. pinicola demonstrated notable production of xylanase activity up to 43 nkat/mL on birch wood, together with moderate β-glucosidase and endoglucanase cellulolytic activities. The intermediate rot fungus S. commune was the strongest producer of β-glucosidase with activities up to 54 nkat/mL, and a notable producer of xylanase activity, even up to 620 nkat/mL, on birch wood. Low lignin-attacking but moderate activities against cellulose and hemicellulose were observed with the litter-decomposer C. cinerea on barley straw. Overall, our results imply that plant cell wall decomposition ability of taxonomically and ecologically divergent fungi is in line with their enzymatic decay strategy, which is fundamental in understanding their physiology and potential for biotechnological applications.
  • Mäkinen, Mari; Kuuskeri, Jaana; Laine, Pia; Smolander, Olli-Pekka; Kovalchuk, Andriy; Zeng, Zhen; Asiegbu, Fred; Paulin, Lars; Auvinen, Petri; Lundell, Taina (2019)
    Background The white rot fungus Phlebia radiata, a type species of the genus Phlebia, is an efficient decomposer of plant cell wall polysaccharides, modifier of softwood and hardwood lignin, and is able to produce ethanol from various waste lignocellulose substrates. Thus, P. radiata is a promising organism for biotechnological applications aiming at sustainable utilization of plant biomass. Here we report the genome sequence of P. radiata isolate 79 originally isolated from decayed alder wood in South Finland. To better understand the evolution of wood decay mechanisms in this fungus and the Polyporales phlebioid clade, gene content and clustering of genes encoding specific carbohydrate-active enzymes (CAZymes) in seven closely related fungal species was investigated. In addition, other genes encoding proteins reflecting the fungal lifestyle including peptidases, transporters, small secreted proteins and genes involved in secondary metabolism were identified in the genome assembly of P. radiata. Results The PACBio sequenced nuclear genome of P. radiata was assembled to 93 contigs with 72X sequencing coverage and annotated, revealing a dense genome of 40.4 Mbp with approximately 14 082 predicted protein-coding genes. According to functional annotation, the genome harbors 209 glycoside hydrolase, 27 carbohydrate esterase, 8 polysaccharide lyase, and over 70 auxiliary redox enzyme-encoding genes. Comparisons with the genomes of other phlebioid fungi revealed shared and specific properties among the species with seemingly similar saprobic wood-decay lifestyles. Clustering of especially GH10 and AA9 enzyme-encoding genes according to genomic localization was discovered to be conserved among the phlebioid species. In P. radiata genome, a rich repertoire of genes involved in the production of secondary metabolites was recognized. In addition, 49 genes encoding predicted ABC proteins were identified in P. radiata genome together with 336 genes encoding peptidases, and 430 genes encoding small secreted proteins. Conclusions The genome assembly of P. radiata contains wide array of carbohydrate polymer attacking CAZyme and oxidoreductase genes in a composition identifiable for phlebioid white rot lifestyle in wood decomposition, and may thus serve as reference for further studies. Comparative genomics also contributed to enlightening fungal decay mechanisms in conversion and cycling of recalcitrant organic carbon in the forest ecosystems.
  • Lundell, Taina K.; Mäkelä, Miia R.; de Vries, Ronald P.; Hilden, Kristiina S. (Academic Press, 2014)
    Advances in Botanical Research
    Saprobic (saprotrophic and saprophytic) wood-decay fungi are in majority species belonging to the fungal phylum Basidiomycota, whereas saprobic plant litter-decomposing fungi are species of both the Basidiomycota and the second Dikarya phylum Ascomycota. Wood-colonizing white rot and brown rot fungi are principally polypore, gilled pleurotoid, or corticioid Basidiomycota species of the class Agaricomycetes, which also includes forest and grassland soil-inhabiting and litter-decomposing mushroom species. In this chapter, examples of lignocellulose degradation patterns are presented in the current view of genome sequencing and comparative genomics of fungal wood-decay enzymes. Specific attention is given to the model white rot fungus, lignin-degrading species Phanerochaete chrysosporium and its wood decay-related gene expression (transcriptomics) on lignocellulose substrates. Types of fungal decay patterns on wood and plant lignocellulose are discussed in the view of fungal lifestyle strategies. Potentiality of the plant biomass-decomposing Basidiomycota species, their secreted enzymes and respective lignocellulose-attacking genes is evaluated in regard to development of biotechnological and industrial applications.
  • Vlasak, Josef; Vlasak Jr., Josef; Kinnunen, Juha; Spirin, Viacheslav (2015)
    DNA study of Sarcoporia polyspora (syn. Parmastomyces transmutans) revealed only negligible sequence differences between conifer-dwelling specimens with cartilaginous layer in the context from the USA, Brazil, Europe and Far East Asia, but also a very different sequence of three resupinate and hardwood-bound collections from the USA and Madeira Islands without this layer, and with slightly narrower and brownish spores. This fungus was also found among historical USA collections of S. polyspora in BPI herbarium and is described here as Sarcoporia longitubulata. Phylogenetic position of Sarcoporia is discussed.
  • Tedersoo, Leho; Sanchez-Ramirez, Santiago; Koljalg, Urmas; Bahram, Mohammad; Doring, Markus; Schigel, Dmitry; May, Tom; Ryberg, Martin; Abarenkov, Kessy (2018)
    High-throughput sequencing studies generate vast amounts of taxonomic data. Evolutionary ecological hypotheses of the recovered taxa and Species Hypotheses are difficult to test due to problems with alignments and the lack of a phylogenetic backbone. We propose an updated phylum-and class-level fungal classification accounting for monophyly and divergence time so that the main taxonomic ranks are more informative. Based on phylogenies and divergence time estimates, we adopt phylum rank to Aphelidiomycota, Basidiobolomycota, Calcarisporiellomycota, Glomeromycota, Entomophthoromycota, Entorrhizomycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota and Olpidiomycota. We accept nine subkingdoms to accommodate these 18 phyla. We consider the kingdom Nucleariae (phyla Nuclearida and Fonticulida) as a sister group to the Fungi. We also introduce a perl script and a newick-formatted classification backbone for assigning Species Hypotheses into a hierarchical taxonomic framework, using this or any other classification system. We provide an example of testing evolutionary ecological hypotheses based on a global soil fungal data set.
  • Mattila, Hans K; Mäkinen, Mari; Lundell, Taina (BioMed Central, 2020)
    Abstract Background Fungal decomposition of wood is considered as a strictly aerobic process. However, recent findings on wood-decaying fungi to produce ethanol from various lignocelluloses under oxygen-depleted conditions lead us to question this. We designed gene expression study of the white rot fungus Phlebia radiata (isolate FBCC0043) by adopting comparative transcriptomics and functional genomics on solid lignocellulose substrates under varying cultivation atmospheric conditions. Results Switch to fermentative conditions was a major regulator for intracellular metabolism and extracellular enzymatic degradation of wood polysaccharides. Changes in the expression profiles of CAZy (carbohydrate-active enzyme) encoding genes upon oxygen depletion, lead into an alternative wood decomposition strategy. Surprisingly, we noticed higher cellulolytic activity under fermentative conditions in comparison to aerobic cultivation. In addition, our results manifest how oxygen depletion affects over 200 genes of fungal primary metabolism including several transcription factors. We present new functions for acetate generating phosphoketolase pathway and its potential regulator, Adr1 transcription factor, in carbon catabolism under oxygen depletion. Conclusions Physiologically resilient wood-decomposing Basidiomycota species P. radiata is capable of thriving under respirative and fermentative conditions utilizing only untreated lignocellulose as carbon source. Hypoxia-response mechanism in the fungus is, however, divergent from the regulation described for Ascomycota fermenting yeasts or animal-pathogenic species of Basidiomycota.
  • Mali, Tuulia; Kuuskeri, Jaana; Shah, Firoz; Lundell, Taina Kristina (2017)
    Fomitopsis pinicola is a species of Polyporales frequently encountered in Nordic temperate and boreal forests. In nature, the fungus causes destructive brown rot in wood, colonizing tree trunks often occupied by other Basidiomycota species. We mimicked these species-species interactions by introducing F. pinicola to five white rot species, all common saprotrophs of Norway spruce. Hyphal interactions and mycelial growth in various combinations were recorded, while activities of lignocellulose-acting CAZymes and oxidoreductases were followed in co-cultures on two different carbon-source media. Of the species, Phlebia radiata and Trichaptum abietinum were the strongest producers of lignin-modifying oxidoreductases (laccase, manganese peroxidase) when evaluated alone, as well as in co-cultures, on the two different growth media (low-nitrogen liquid medium containing ground coniferous wood, and malt extract broth). F. pinicola was an outstanding producer of oxalic acid (up to 61 mM), whereas presence of P. radiata prevented acidification of the growth environment in the liquid malt-extract cultures. When enzyme profiles of the species combinations were clustered, time-dependent changes were observed on wood-supplemented medium during the eight weeks of growth. End-point acidity and production of mycelium, oxalic acid and oxidoreductase activities, in turn clustered the fungal combinations into three distinct functional groups, determined by the presence of F. pinicola and P. radiata, by principal component analysis. Our findings indicate that combinations of wood-decay fungi have dramatic dynamic effects on the production of lignocellulose-active enzymes, which may lead to divergent degradative processes of dead wood and forest litter.
  • Kuuskeri, Jaana Tuulia; Mäkelä, Miia Riitta; Isotalo, Jarkko Mikael; Oksanen, Ilona Maria; Lundell, Taina Kristina (2015)
    Background. The fungal genus Phlebia consists of a number of species that are significant in wood decay. Biotechnological potential of a few species for enzyme production and degradation of lignin and pollutants has been previously studied, when most of the species of this genus are unknown. Therefore, we carried out a wider study on biochemistry and systematics of Phlebia species. Methods. Isolates belonging to the genus Phlebia were subjected to four-gene sequence analysis in order to clarify their phylogenetic placement at species level and evolutionary relationships of the genus among phlebioid Polyporales. rRNA-encoding (5.8S, partial LSU) and two protein-encoding gene (gapdh, rpb2) sequences were adopted for the evolutionary analysis, and ITS sequences (ITS1 + 5.8S + ITS2) were aligned for in-depth species-level phylogeny. The 49 fungal isolates were cultivated on semi-solid milled spruce wood medium for 21 days in order to follow their production of extracellular lignocellulose-converting oxidoreductases and carbohydrate active enzymes. Results. Four-gene phylogenetic analysis confirmed the polyphyletic nature of the genus Phlebia. Ten species-level subgroups were formed, and their lignocellulose-converting enzyme activity profiles coincided with the phylogenetic grouping. The highest enzyme activities for lignin modification (manganese peroxidase activity) were obtained for Phlebia radiata group, which supports our previous studies on the enzymology and gene expression of this species on lignocellulosic substrates. Conclusions. Our study implies that there is a species-level connection of molecular systematics (genotype) to the efficiency in production of both lignocellulose-converting carbohydrate active enzymes and oxidoreductases (enzyme phenotype) on spruce wood. Thus, we may propose a similar phylogrouping approach for prediction of lignocellulose-converting enzyme phenotypes in new fungal species or genetically and biochemically less-studied isolates of the wood-decay Polyporales.
  • Salavirta, Heikki; Oksanen, Ilona; Kuuskeri, Jaana; Makela, Miia; Laine, Pia; Paulin, Lars; Lundell, Taina (2014)
    Mitochondria are eukaryotic organelles supporting individual life-style via generation of proton motive force and cellular energy, and indispensable metabolic pathways. As part of genome sequencing of the white rot Basidiomycota species Phlebia radiata, we first assembled its mitochondrial genome (mtDNA). So far, the 156 348 bp mtDNA is the second largest described for fungi, and of considerable size among eukaryotes. The P. radiata mtDNA assembled as single circular dsDNA molecule containing genes for the large and small ribosomal RNAs, 28 transfer RNAs, and over 100 open reading frames encoding the 14 fungal conserved protein subunits of the mitochondrial complexes I, III, IV, and V. Two genes (atp6 and tRNA-IleGAU) were duplicated within 6.1 kbp inverted region, which is a unique feature of the genome. The large mtDNA size, however, is explained by the dominance of intronic and intergenic regions (sum 80% of mtDNA sequence). The intergenic DNA stretches harness short (≤200 nt) repetitive, dispersed and overlapping sequence elements in abundance. Long self-splicing introns of types I and II interrupt eleven of the conserved genes (cox1,2,3; cob; nad1,2,4,4L,5; rnl; rns). The introns embrace a total of 57 homing endonucleases with LAGLIDADGD and GYI-YIG core motifs, which makes P. radiata mtDNA to one of the largest known reservoirs of intron-homing endonucleases. The inverted duplication, intergenic stretches, and intronic features are indications of dynamics and genetic flexibility of the mtDNA, not fully recognized to this extent in fungal mitochondrial genomes previously, thus giving new insights for the evolution of organelle genomes in eukaryotes.
  • Guo, Qingxue; Yan, Lijuan; Korpelainen, Helena; Niinemets, Ülo; Li, Chunyang (2019)
    The impact of conspecific and heterospecific neighboring plants on soil bacterial and fungal communities has never been explored in a forest ecosystem. In the present study, we first investigated soil microbial communities in three plantations: Larix kaempferi monoculture, L. olgensis monoculture and their mixture. Then, a two-year growth experiment was conducted to investigate the effects of intra- and inter-specific interactions of L. kaempferi and L. olgensis on rhizosphere microbial communities at two different nitrogen levels. The results demonstrated clear differences in the beta-diversity and composition of bacteria and fungi among the three plantations, which implied the presence of different effects of plant-plant interactions on soil microbial communities. The results of the pot experiment showed that L. kaempferi suffered from greater neighbor effects from its conspecific neighbor regardless of N fertilization, although the effect declined when L. kaempferi was grown with L. olgensis under N fertilization. Changes in intra- and inter-specific plant interactions significantly impacted the chemical and biological properties of soil under N fertilization, with lower concentrations of NH4+, and lower soil microbial biomass (C-Mic) and soil carbon nitrogen biomass (N-Mic) under intra-specific plant interactions of L. kaempferi (KK) compared to inter-specific interactions of L. kaempferi and L. olgensis (KO). N fertilization increased bacterial and fungal alpha diversities in the rhizosphere soil of KO. For the beta diversity, the PERMANOVA results demonstrated that there was a significant impact of intra- and inter-specific plant interactions on soil microbial communities, with KK significantly differing from intra-specific plant interactions of L. olgensis (OO) and KO. The two plant species and N fertilization showed specific effects on the soil microbial composition, particularly on the fungal community. Both L. olgensis and N fertilization increased the abundance of Ascomycota but reduced that of Basidiomycota, and even shifted the dominance from Basidiomycota to Ascomycota under KO combined with N fertilization.
  • Gafforov, Yusufjon; Ordynets, Alexander; Langer, Ewald; Yarasheva, Manzura; de Mello Gugliotta, Adriana; Schigel, Dmitry; Pecoraro, Lorenzo; Zhou, Yu; Cai, Lei; Zhou, Li-Wei (2020)
    Uzbekistan, located in Central Asia, harbors high diversity of woody plants. Diversity of wood-inhabiting fungi in the country, however, remained poorly known. This study summarizes the wood-inhabiting basidiomycte fungi (poroid and corticoid fungi plus similar taxa such as Merismodes, Phellodon, and Sarcodon) (Agaricomycetes, Basidiomycota) that have been found in Uzbekistan from 1950 to 2020. This work is based on 790 fungal occurrence records: 185 from recently collected specimens, 101 from herbarium specimens made by earlier collectors, and 504 from literature-based records. All data were deposited as a species occurrence record dataset in the Global Biodiversity Information Facility and also summarized in the form of an annotated checklist in this paper. All 286 available specimens were morphologically examined. For 138 specimens, the 114 ITS and 85 LSU nrDNA sequences were newly sequenced and used for phylogenetic analysis. In total, we confirm the presence of 153 species of wood-inhabiting poroid and corticioid fungi in Uzbekistan, of which 31 species are reported for the first time in Uzbekistan, including 19 that are also new to Central Asia. These 153 fungal species inhabit 100 host species from 42 genera of 23 families. Polyporales and Hymenochaetales are the most recorded fungal orders and are most widely distributed around the study area. This study provides the first comprehensively updated and annotated the checklist of wood-inhabiting poroid and corticioid fungi in Uzbekistan. Such study should be expanded to other countries to further clarify species diversity of wood-inhabiting fungi around Central Asia.
  • Brandrud, Tor Erik; Dima, Balint; Liimatainen, Kare; Niskanen, Tuula (2017)
    Four species belonging to the Cortinarius puellaris group are presented, including the two new species C. biriensis, C. subpuellaris and the recently described C. puellaris. Based on type studies, it is shown that the fourth species in the group should be named C. intempestivus (=C. cristatosporus). The species co-occur and are all studied mainly from SE Norwegian calcareous Tilia forests, but at least some of them also occur in Quercus(-Carpinus) forests in temperate-mediterranean areas of C-S Europe, and are apparently widespread and much overlooked. These are all tiny, small, ochre-redbrown telamonioid cortinarii with strongly to spiny ornamented spores. Phylogenetically, the taxa are well-distinguished by 8 to 22 ITS differences. Together with two taxa only known from ectomycorrhizal ITS sequences, they constitute an apparently well-supported Glade with uncertain affinity.
  • Vesala, Risto; Harjuntausta, Anni; Hakkarainen, Anu; Rönnholm, Petri; Pellikka, Petri; Rikkinen, Jouko (2019)
    Background Large and complex mounds built by termites of the genus Macrotermes characterize many dry African landscapes, including the savannas, bushlands, and dry forests of the Tsavo Ecosystem in southern Kenya. The termites live in obligate symbiosis with filamentous fungi of the genus Termitomyces. The insects collect dead plant material from their environment and deposit it into their nests where indigestible cell wall compounds are effectively decomposed by the fungus. Above-ground mounds are built to enhance nest ventilation and to maintain nest interior microclimates favorable for fungal growth. Objectives In Tsavo Ecosystem two Macrotermes species associate with three different Termitomyces symbionts, always with a monoculture of one fungal species within each termite nest. As mound architecture differs considerably both between and within termite species we explored potential relationships between nest thermoregulatory strategies and species identity of fungal symbionts. Methods External dimensions were measured from 164 Macrotermes mounds and the cultivated Termitomyces species were identified by sequencing internal transcribed spacer (ITS) region of ribosomal DNA. We also recorded the annual temperature regimes of several termite mounds to determine relations between mound architecture and nest temperatures during different seasons. Results Mound architecture had a major effect on nest temperatures. Relatively cool temperatures were always recorded from large mounds with open ventilation systems, while the internal temperatures of mounds with closed ventilation systems and small mounds with open ventilation systems were consistently higher. The distribution of the three fungal symbionts in different mounds was not random, with one fungal species confined to “hot nests.” Conclusions Our results indicate that different Termitomyces species have different temperature requirements, and that one of the cultivated species is relatively intolerant of low temperatures. The dominant Macrotermes species in our study area can clearly modify its mound architecture to meet the thermal requirements of several different symbionts. However, a treacherous balance seems to exist between symbiont identity and mound architecture, as the maintenance of the thermophilic fungal species obviously requires reduced mound architecture that, in turn, leads to inadequate gas exchange. Hence, our study concludes that while the limited ventilation capacity of small mounds sets strict limits to insect colony growth, in this case, improving nest ventilation would invariable lead to excessively low nest temperatures, with negative consequences to the symbiotic fungus.