Browsing by Subject "Bcl-2"

Sort by: Order: Results:

Now showing items 1-4 of 4
  • Liu, Liwei; Herfindal, Lars; Jokela, Jouni; Shishido, Tania Keiko; Wahlsten, Matti; Doskeland, Stein Ove; Sivonen, Kaarina (2014)
  • Huovila, Tiina (Helsingfors universitet, 2017)
    Autophagy is a pathway for cells to degrade intracellular components that are no longer needed or are detrimental for the cells. It is essential for cell homeostasis and survival and has been related to various diseases and pathophysiology. Autophagy is a complex process and there are still several unclear und unknown aspects to it. Regulation of autophagy is essential to prevent unwanted and escess activation, and several pathways and molecules, both stimulatory and inhibitory, are included. Different signaling pathways are sensitive to a variety of environmental clues. Two main autophagy pathways are mTOR-dependent pathway and mTOR-independent pathway. Induction of autophagy in the latter pathway is dependent on the interaction of Bcl-2 and Beclin 1. Prolyl oligopeptidase (PREP) is a peptidase enzyme that has several substrates. PREP-inhibition by KYP-2047 can reduce aggregation of α-synuclein in two ways: by increasing rate of autophagy and by decreasing dimerization. The aim of this study was to find out how PREP affects the interaction between Bcl-2 and Beclin 1 and how this affects autophagy. Based on previous studies, PREP-inhibition seems to increase the amount of Beclin 1 and to affect the phosphorylation of Bcl-2 and Beclin 1, leading to dissociation of the complex. Hypothesis was to see differences in colocalization of Bcl-2 and Beclin 1 in cells treated with different PREP-modifications and for PREP-inhibition to decrease the colocalization. Human embryonic kidney cells 293 (HEK-293) and hPREP knockout cell line created from them by using CRISPR/Cas9-silencing were used in the experiments. Two experiments were performed on regular HEK-cells: inhibitor experiment with KYP-2047 (1 or 10 µM) and overexpression experiment (transfection with either active or inactive hPREP plasmid). After immunofluorescence staining, cells were analysed with confocal microscope and colocation analysis of Bcl-2 and Beclin 1 was performed. The intensity of Beclin 1 in the nuclei was stronger than in other parts of the cell in all samples, which could indicate a stronger activity of its nuclear tasks compared to autophagy. However, the antibody used for immunofluorescence has most likely caused this staining pattern. Based on previous knowledge, it was expected to see differences in colocalization of Bcl-2 and Beclin 1 in cells treated with different PREP-modifications. However, there were no significant differences in colocalization of Beclin 1 and Bcl-2 in any of the experiments but it was nearly 100 percent in all treatments. Since rate of autophagy in cells was not detected, it is impossible to determine, if there were changes in autophagy that were not reflected as changes in colocalization of these two proteins. It is possible that even a small change in colocalization can affect the rate of autophagy or there might be subpopulations where the interaction is interrupted and these changes are so small that they are not detectable with the methods used in this experiment. Both Bcl-2 and Beclin 1 also have functions not related to autophagy, which could be one reason behind the results gained in this study.
  • Lucendo, Estefania; Sancho, Monica; Lolicato, Fabio; Javanainen, Matti; Kulig, Waldemar; Leiva, Diego; Duart, Gerard; Andreu-Fernandez, Vicente; Mingarro, Ismael; Orzaez, Mar (2020)
    The Bcl-2 protein family comprises both proand antiapoptotic members that control the permeabilization of the mitochondrial outer membrane, a crucial step in the modulation of apoptosis. Recent research has demonstrated that the carboxyl-terminal transmembrane domain (TMD) of some Bcl-2 protein family mem-bers can modulate apoptosis; however, the transmembrane interactome of the antiapoptotic protein Mcl-1 remains largely unexplored. Here, we demonstrate that the Mcl-1 TMD forms homooligomers in the mitochondrial membrane, competes with full-length Mcl-1 protein with regards to its antiapoptotic function, and induces cell death in a Bok-dependent manner. While the Bok TMD oligomers locate preferentially to the endoplasmic reticulum (ER), heterooligomerization between the TMDs of Mcl-1 and Bok predominantly takes place at the mitochondrial membrane. Strikingly, the coexpression of Mcl-1 and Bok TMDs produces an increase in ER mitochondrial-associated membranes, suggesting an active role of Mcl-1 in the induced mitochondrial targeting of Bok. Finally, the introduction of Mcl-1 TMD somatic mutations detected in cancer patients alters the TMD interaction pattern to provide the Mcl-1 protein with enhanced antiapoptotic activity, thereby highlighting the clinical relevance of Mcl-1 TMD interactions.
  • Uimari, Outi; Ahtikoski, Anne; Kämpjärvi, Kati; Butzow, Ralf; Järvelä, Ilkka Y.; Ryynänen, Markku; Aaltonen, Lauri A.; Vahteristo, Pia; Kuismin, Outi (2021)
    Introduction Hereditary leiomyomatosis and renal cell cancer (HLRCC) constitute a tumor susceptibility syndrome caused by germline mutations in the fumarate hydratase (FH) gene. The most common features are leiomyomas of the uterus and the skin. The syndrome includes a predisposition to early-onset, aggressive renal cell cancer. It is important to identify women with HLRCC among other uterine leiomyoma patients in order to direct them to genetic counseling and to identify other affected family members. Material and methods We conducted a nationwide historical study to identify typical clinical characteristics, uterine leiomyoma morphology, and immunohistochemistry for diagnosing HLRCC. The study included 20 women with a known FH germline mutation and 77 women with sporadic uterine leiomyomas. The patient records of all women were reviewed to obtain clinical details regarding their leiomyomas. Uterine leiomyoma tissue specimens from 43 HLRCC-related leiomyomas and 42 sporadic leiomyomas were collected and prepared for histology analysis. A morphologic description was performed on hematoxylin & eosin-stained tissue slides, and immunohistochemical analysis was carried out for CD34, Bcl-2, and p53 stainings. Results The women with HLRCC were diagnosed with uterine leiomyomas at a young age compared with the sporadic leiomyoma group (mean 33.8 years vs. 45.4 years, P < 0.0001), and their leiomyomas occurred as multiples compared with the sporadic leiomyoma group (more than four tumors 88.9% vs. 30.8%, P < 0.0001). Congruently, these women underwent surgical treatment at younger age compared with the sporadic leiomyoma group (mean 37.3 years vs. 48.3 years, P < 0.0001). HLRCC leiomyomas had denser microvasculature highlighted by CD34 immunostaining when compared with the sporadic leiomyoma group (112.6 mean count/high-power field, SD 20.8 vs. 37.4 mean count/high-power field, SD 21.0 P < 0.0001) and stronger anti-apoptotic protein Bcl-2 immunostaining when compared with the sporadic leiomyoma group (weak 4.7%, moderate 44.2%, strong 51.2% vs. 26.2%, 52.4%, 21.4%, respectively, P = 0.003). No differences were observed in p53 staining. Conclusions Women with HLRCC may be identified through the distinct clinical characteristics: symptomatic and numerous leioymyomas at young age, and morphologic features of FH-mutant leiomyomas, aided by Bcl-2 and CD34 immunohistochemistry. Further, distinguishing individuals with a germline FH mutation enables proper genetic counseling and regular renal monitoring.