Browsing by Subject "Biogeography"

Sort by: Order: Results:

Now showing items 1-4 of 4
  • Holopainen, Jari; Helama, Samuli; Väre, Henry (2018)
    Abstract Long records of phenological observations are commonly used as data in global change and palaeoclimate research and to analyse plants' responses to climatic changes. Here we delve into the historical archives of plant phenological observations (1750–1875) compiled and published previously by Professor Adolf Moberg (Imperial Alexander University of Finland). The digitized dataset represents 44,487 observations of 450 different plant species for their 15 different phenological phases made in 193 sites across Finland, and results in 662 different phenological variables. The five most frequently observed variables are the blooming of rye, the sowing of barley, the blooming of bird cherry, the leaf outbreak of birch, and the sowing of oat. The spring and summer observations demonstrate positive relationships between the onset date and the site latitude, this relationship becoming negative for observations made in the autumn. This latitudinal effect is evident in the raw data as demonstrated by the temporal correlations between the unadjusted mean phenological records and the mean latitude of the sites. After the latitudinal effect is removed from the original data such correlations are much reduced and the new set of phenological records based on the adjusted dates can be computed. The resulting mean phenological records correlate negatively and statistically significantly with the mean temperatures from April through July. Linear trends indicate (i) summer onsets having become delayed by more than one week over the full period and (ii) shortening of the growing seasons since 1846. The dataset is made available in an open repository.
  • Sukhorukov, Alexander P.; Sennikov, Alexander; Veranso-Libalah, Marie Claire; Kushunina, Maria; Nilova, Maya; Heath, Roger; Heath, Alison; Mazei, Yuri; Zaika, Maxim A. (2021)
    Glinus is a small genus of Molluginaceae with 8-10 species mostly distributed in the tropics of the World. Its composition and evolutionary relationships were poorly studied. A new molecular phylogeny constructed here using nuclear (ITS) and chloroplast (rbcL, trnK-matK) markers confirmed the monophyly of the as sister to the remainder of the genus followed by G. oppositifolius. Three other clades are: G. hirtus with G. orygioides; G. radiatus and G. lotoides; the latter is represented by asample from North America, and G. zambesiacus as sister to G. setiflorus + G. lotoides + G. dictamnoides.On the plastid gene tree, G. bainesii + G. oppositifolius form a sister clade to all other Glinus species. The next clade is formed by G. hirtus and G. orygioides followed by G. radiatus plus an American sample of G. lotoides. The next branch comprises G. setiflorus as sister to G. zambesiacus + G. lotoides + G. dictamnoides. Glinus seems to have originated from Africa around the Late Eocene or Early Miocene, with further radiations to Australia and the Americas during the Late Miocene or Late Pliocene. Compared with the previous limited character set used for the diagnostics, we have found ten new morphological and carpological traits distinguishing Glinus members. In both trees based on nuclear and plastid datasets, the major phylogenetic clades cannot be characterized by the peculiar morphological characters. Many shared character states leading to their contrasting pattern in the multivariate analysis model are interpreted as a high homoplasy in the phylogenetically distant species. We paid special attention to the composition of the genus in Sub-Saharan Africa, a region with the greatest species diversity. Our results provide new insight into the taxonomy of Glinus in this region. Glinus lotoides var. virens accepted in many previous works is a synonym of G. dictamnoides that is closely related to G. lotoides based on molecular analysis and morphological characters. The status of the American populations of G. lotoides needs further investigation due to different characters of the specimens from the Old and the New World. Many specimens previously identified as G. lotoides var. virens and as the intermediates G. lotoides x G. oppositifolius belong to G. zambesiacus sp. nov. and G. hirtus comb. nov. (= Mollugo hirta); the latter species is resurrected from synonymy after 200 years of unacceptance. In some African treatments, G. hirtus was known under the invalidly published name G. dahomensis. Glinus zambesiacus is distributed in the southern and eastern parts of tropical Africa, and G. hirtus previously assumed to be endemic to West Africa is indeed a species with a wide distribution across the tropical part of the continent. Glinus microphyllus previously accepted as endemic to West Tropical Africa together with other new synonyms (G. oppositifolius var. lanatus, G. herniarioides, Wycliffea rotundifolia) is considered here as G. oppositifolius var. keenanii comb. nov. (= Mollugo hirta var. keenanii), a variety found across the entire distribution of G. oppositifolius (Australia, Asia, and Africa). The presence of the American G. radiatus in Africa is not confirmed, and all records of this species belong to G. hirtus. M. setiflora, Pharnaceum pentagynum, Wycliffea) as well as a neotype of G. trianthemoides are designated. A new key to the identification of all Glinus species in Sub-Saharan Africa is provided. A checklist is given of all accepted species in this region (G. bainesii, G. hirtus, G. lotoides, G. oppositifolius s.l., G. setiflorus, and G. zambesiacus) with their nomenclature, morphological description and geographical distribution.
  • Weckström, Kaarina; Roche, Benjamin Redmond; Miettinen, Arto; Krawczyk, Diana; Limoges, Audrey; Juggins, Steve; Ribeiro, Sofia; Heikkilä, Maija (2020)
    A long-term perspective is essential for understanding environmental change. To be able to access the past, environmental archives such as marine and lake sediments that store information in the form of diverse proxy records are used. Whilst many analytical techniques exist to extract the information stored in these proxy records, the critical assessment and refinement of current methods in addition to developing new methods is crucial to improving our understanding. This study aims to improve our knowledge on diatom species used for reconstructing ocean surface conditions, especially temperature and sea ice variability over time. We define the distribution and the relationship to sea surface temperature (SST) and sea ice concentrations (SIC) of the species Fragilariopsis oceanica, Fragilariopsis reginae-jahniae and Fossula arctica using diatom training sets from the northern North Atlantic. We further assess the effect of separating these species compared to grouping them under F. oceanica, as has been done in the past. Our results suggest that while these three species share similarities such as the preference for stratified waters induced by sea ice or glacier meltwater, they also exhibit heterogeneous distributions across the northern North Atlantic, with individual optima for SST and SIC. This also affects quantitative reconstructions based on our data, resulting in lower SST and higher SIC estimates when the species are separated in the surface sediment and down-core diatom assemblages.
  • Amesbury, Matthew J.; Booth, Robert K.; Roland, Thomas P.; Bunbury, Joan; Clifford, Michael J.; Charman, Dan J.; Elliot, Suzanne; Finkelstein, Sarah; Garneau, Michelle; Hughes, Paul D. M.; Lamarre, Alexandre; Loisel, Julie; Mackay, Helen; Magnan, Gabriel; Markel, Erin R.; Mitchell, Edward A. D.; Payne, Richard J.; Pelletier, Nicolas; Roe, Helen; Sullivan, Maura E.; Swindles, Graeme T.; Talbot, Julie; van Bellen, Simon; Warner, Barry G. (2018)
    Fossil testate amoeba assemblages have been used to reconstruct peatland palaeohydrology for more than two decades. While transfer function training sets are typically of local-to regional-scale in extent, combining those data to cover broad ecohydrological gradients, from the regional-to continental- and hemispheric-scales, is useful to assess if ecological optima of species vary geographically and therefore may have also varied over time. Continental-scale transfer functions can also maximise modern analogue quality without losing reconstructive skill, providing the opportunity to contextualise understanding of purely statistical outputs with greater insight into the biogeography of organisms. Here, we compiled, at moderate taxonomic resolution, a dataset of nearly 2000 modern surface peatland testate amoeba samples from 137 peatlands throughout North America. We developed transfer functions using four model types, tested them statistically and applied them to independent palaeoenvironmental data. By subdividing the dataset into eco-regions, we examined biogeographical patterns of hydrological optima and species distribution across North America. We combined our new dataset with data from Europe to create a combined transfer function. The performance of our North-American transfer function was equivalent to published models and reconstructions were comparable to those developed using regional training sets. The new model can therefore be used as an effective tool to reconstruct peatland palaeohydrology throughout the North American continent. Some eco-regions exhibited lower taxonomic diversity and some key indicator taxa had restricted ranges. However, these patterns occurred against a background of general cosmopolitanism, at the moderate taxonomic resolution used. Likely biogeographical patterns at higher taxonomic resolution therefore do not affect transfer function performance. Output from the combined North American and European model suggested that any geographical limit of scale beyond which further compilation of peatland testate amoeba data would not be valid has not yet been reached, therefore advocating the potential for a Holarctic synthesis of peatland testate amoeba data. Extending data synthesis to the tropics and the Southern Hemisphere would be more challenging due to higher regional endemism in those areas. (C) 2018 The Authors. Published by Elsevier Ltd.