Browsing by Subject "C1q"

Sort by: Order: Results:

Now showing items 1-4 of 4
  • Dijkstra, Douwe Jan; Lokki, A. Inkeri; Gierman, Lobke Marijn; Borggreven, Nicole Veronique; van der Keur, Carin; Eikmans, Michael; Gelderman, Kyra Andrea; Laivuori, Hannele; Iversen, Ann-Charlotte; van der Hoorn, Marie-Louise P.; Trouw, Leendert Adrianus (2022)
    Preeclampsia (PE) generally manifests in the second half of pregnancy with hypertension and proteinuria. The understanding of the origin and mechanism behind PE is incomplete, although there is clearly an immune component to this disorder. The placenta constitutes a complicated immune interface between fetal and maternal cells, where regulation and tolerance are key. Stress factors from placental dysfunction in PE are released to the maternal circulation evoking the maternal response. Several complement factors play a role within this intricate landscape, including C1q in vascular remodeling and Factor H (FH) as the key regulator of alternative pathway complement activation. We hypothesize that decreased levels of C1q or FH, or disturbance of their function by autoantibodies, may be associated with PE. Autoantibodies against C1q and FH and the concentrations of C1q and FH were measured by ELISA in maternal sera from women with preeclamptic and normal pregnancies. Samples originated from cohorts collected in the Netherlands (n=63 PE; n=174 control pregnancies, n=51 nonpregnant), Finland (n=181 PE; n=63 control pregnancies) and Norway (n=59 PE; n=27 control pregnancies). Serum C1q and FH concentrations were higher in control pregnancy than in nonpregnant women. No significant differences were observed for serum C1q between preeclamptic and control pregnancy in any of the three cohorts. Serum levels of FH were lower in preeclamptic pregnancies compared to control pregnancies in two of the cohorts, this effect was driven by the early onset PE cases. Neither anti-C1q autoantibodies nor anti-FH autoantibodies levels differed between women with PE and normal pregnancies. In conclusion, levels of anti-C1q and anti-FH autoantibodies are not increased in PE. C1q and FH are increased in pregnancy, but importantly, a decrease in FH concentration is associated with PE.
  • Reichhardt, Martin Parnov; Messing, Marcel; Andersson, Sture; Kolho, Kaija-Leena; Meri, Seppo (2021)
    The first months of life represent a crucial time period for an infant. Alongside establishing the early microbiome, the mucosal immunological homeostasis is being developed. Both processes may be perturbed in prematurely born infants. The glycoprotein SALSA plays a role in mucosal inflammation and microbial clearance. It is one of the most abundant molecules on the intestinal mucosal surfaces in early life. SALSA binds to many types of microbes and host defence molecules like IgA, C1q and collectin molecules. We here describe the development in faecal SALSA levels during the first three months of life. During these 90 days, the median SALSA level in full-term babies decreased from 1100 mu g/mL (range 49-17 000 mu g/mL) to 450 mu g/mL (range 33-1000 mu g/mL). Lower levels of SALSA were observed in prematurely born infants in the same time period. Our novel observation thus indicates an impact of prematurity on an important component of the infant intestinal immune system. Changes in SALSA in early life may have an effect on the early establishment of the human microbiome.
  • O'Flynn, Joseph; Kotimaa, Juha; Faber-Krol, Ria; Koekkoek, Karin; Klar-Mohamad, Ngaisah; Koudijs, Angela; Schwaeble, Wilhelm J.; Stover, Cordula; Daha, Mohamed R.; van Kooten, Cees (2018)
    Properdin is the only known positive regulator of complement activation by stabilizing the alternative pathway convertase through C3 binding, thus prolonging its half-life. Recent in vitro studies suggest that properdin may act as a specific pattern recognition molecule. To better understand the role of properdin in vivo, we used an experimental model of acute anti-glomerular basement membrane disease with wild-type, C3-and properdin knockout mice. The model exhibited severe proteinuria, acute neutrophil infiltration and activation, classical and alternative pathway activation, and progressive glomerular deposition of properdin, C3 and C9. Although the acute renal injury was likely due to acute neutrophil activation, we found properdin deposition in C3-knockout mice that was not associated with IgG. Thus, properdin may deposit in injured tissues in vivo independent of its main ligand C3.
  • Reichhardt, Martin Parnov; Meri, Seppo (2016)
    Complement is present mainly in blood. However, following mechanical damage or inflammation, serous exudates enter the mucosal surfaces. Here, the complement proteins interact with other endogenous molecules to keep microbes from entering the parenteral tissues. One of the mucosal proteins known to interact with the early complement components of both the classical and the lectin pathway is the salivary scavenger and agglutinin (SALSA). SALSA is also known as deleted in malignant brain tumors 1 and gp340. It is found both attached to the epithelium and secreted into the surrounding fluids of most mucosal surfaces. SALSA has been shown to bind directly to C1q, mannose-binding lectin, and the ficolins. Through these interactions SALSA regulates activation of the complement system. In addition, SALSA interacts with surfactant proteins A and D, secretory IgA, and lactoferrin. Ulcerative colitis and Crohn's disease are examples of diseases, where complement activation in mucosal tissues may occur. This review describes the latest advances in our understanding of how the early complement components interact with the SALSA molecule. Furthermore, we discuss how these interactions may affect disease propagation on mucosal surfaces in immunological and inflammatory diseases.