Browsing by Subject "C1q"

Sort by: Order: Results:

Now showing items 1-3 of 3
  • Reichhardt, Martin Parnov; Messing, Marcel; Andersson, Sture; Kolho, Kaija-Leena; Meri, Seppo (2021)
    The first months of life represent a crucial time period for an infant. Alongside establishing the early microbiome, the mucosal immunological homeostasis is being developed. Both processes may be perturbed in prematurely born infants. The glycoprotein SALSA plays a role in mucosal inflammation and microbial clearance. It is one of the most abundant molecules on the intestinal mucosal surfaces in early life. SALSA binds to many types of microbes and host defence molecules like IgA, C1q and collectin molecules. We here describe the development in faecal SALSA levels during the first three months of life. During these 90 days, the median SALSA level in full-term babies decreased from 1100 mu g/mL (range 49-17 000 mu g/mL) to 450 mu g/mL (range 33-1000 mu g/mL). Lower levels of SALSA were observed in prematurely born infants in the same time period. Our novel observation thus indicates an impact of prematurity on an important component of the infant intestinal immune system. Changes in SALSA in early life may have an effect on the early establishment of the human microbiome.
  • O'Flynn, Joseph; Kotimaa, Juha; Faber-Krol, Ria; Koekkoek, Karin; Klar-Mohamad, Ngaisah; Koudijs, Angela; Schwaeble, Wilhelm J.; Stover, Cordula; Daha, Mohamed R.; van Kooten, Cees (2018)
    Properdin is the only known positive regulator of complement activation by stabilizing the alternative pathway convertase through C3 binding, thus prolonging its half-life. Recent in vitro studies suggest that properdin may act as a specific pattern recognition molecule. To better understand the role of properdin in vivo, we used an experimental model of acute anti-glomerular basement membrane disease with wild-type, C3-and properdin knockout mice. The model exhibited severe proteinuria, acute neutrophil infiltration and activation, classical and alternative pathway activation, and progressive glomerular deposition of properdin, C3 and C9. Although the acute renal injury was likely due to acute neutrophil activation, we found properdin deposition in C3-knockout mice that was not associated with IgG. Thus, properdin may deposit in injured tissues in vivo independent of its main ligand C3.
  • Reichhardt, Martin Parnov; Meri, Seppo (2016)
    Complement is present mainly in blood. However, following mechanical damage or inflammation, serous exudates enter the mucosal surfaces. Here, the complement proteins interact with other endogenous molecules to keep microbes from entering the parenteral tissues. One of the mucosal proteins known to interact with the early complement components of both the classical and the lectin pathway is the salivary scavenger and agglutinin (SALSA). SALSA is also known as deleted in malignant brain tumors 1 and gp340. It is found both attached to the epithelium and secreted into the surrounding fluids of most mucosal surfaces. SALSA has been shown to bind directly to C1q, mannose-binding lectin, and the ficolins. Through these interactions SALSA regulates activation of the complement system. In addition, SALSA interacts with surfactant proteins A and D, secretory IgA, and lactoferrin. Ulcerative colitis and Crohn's disease are examples of diseases, where complement activation in mucosal tissues may occur. This review describes the latest advances in our understanding of how the early complement components interact with the SALSA molecule. Furthermore, we discuss how these interactions may affect disease propagation on mucosal surfaces in immunological and inflammatory diseases.