Browsing by Subject "CADMIUM"

Sort by: Order: Results:

Now showing items 1-14 of 14
  • Puente-Sánchez, Fernando; Díaz, Silvia; Penacho, Vanessa; Aguilera, Angeles; Olsson, Sanna (2018)
    To better understand heavy metal tolerance in Chlamydomonas acidophila, an extremophilic green alga, we assembled its transcriptome and measured transcriptomic expression before and after Cd exposure in this and the neutrophilic model microalga Chlamydomonas reinhardtii. Genes possibly related to heavy metal tolerance and detoxification were identified and analyzed as potential key innovations that enable this species to live in an extremely acid habitat with high levels of heavy metals. In addition we provide a data set of single orthologous genes from eight green algal species as a valuable resource for comparative studies including eukaryotic extremophiles. Our results based on differential gene expression, detection of unique genes and analyses of codon usage all indicate that there are important genetic differences in C. acidophila compared to C. reinhardtii. Several efflux family proteins were identified as candidate key genes for adaptation to acid environments. This study suggests for the first time that exposure to cadmium strongly increases transposon expression in green algae, and that oil biosynthesis genes are induced in Chlamydomonas under heavy metal stress. Finally, the comparison of the transcriptomes of several acidophilic and non-acidophilic algae showed that the Chlamydomonas genus is polyphyletic and that acidophilic algae have distinctive aminoacid usage patterns.
  • Takala, Ninni; Siren, Heli; Jakl, Michal; Dytrtová, Jana Jaklová (2019)
    The azoles (represented by penconazole, cyproconazole, and tebuconazole in this study) are frequently used agrochemicals to protect various crops against mildew and fungi. They are considered as endocrine disruptors, because they block the biosynthesis (on the level of enzymes inhibition) of biochemicals with steroid structure. Besides targeted impacts, they can partly get into the soil with the rainfall or litter fall and influence/block the biosynthesis of sterols of non-target organisms. In this sense, the risk of disruption of rhizosphere plant-microbial symbiosis and dynamic processes in the soil solution by azoles is of high importance to be evaluated. We have developed an analytical methodology for determination of penconazole, cyproconazole, and tebuconazole in soil solution using capillary electrophoresis with a photodiode array detector at UV-214 nm and acidic electrolyte solution (pH 1.48). The results were also compared with mass spectrometric measurements using mu-TOF mass spectrometry. There approx. 90% of present azoles were bound in the soil solution matrix. The detection limit for these azoles is about 10(-7) mol dm(-3). Because of very low pK(a) of azoles, we have to consider deprotonation of azoles and consequently the high affinity to create complexes with cations. The majority of present azoles in soil solution might form neutral adducts with mono-cations, making them invisible in electrospray mass spectra. [GRAPHICS] .
  • Rosendahl, Sarah Victoria; Anturaniemi (o.s. Roine), Johanna; Vuori, Kristiina A.; Moore, Robin; Hemida, Manal; Hielm-Bjorkman, Anna (2022)
    Obtaining correct amounts of essential elements, and avoiding toxic metals are key factors in dog health. Through analyzing major and trace elements in hair and blood of 50 healthy companion dogs using ICP-MS, we study their associations with dog characteristics and diet, hypothesizing that eating the same diet long-term results in strong correlations between hair and blood element concentrations, and that dog characteristics and diet affect element status. The correlation between hair and blood was significant for Hg (R = 0.601, p = 0.000) and Pb (R = 0.384, p = 0.010). The following associations were significant (p < 0.05): Dark hair had higher Ca and Mg compared to light hair. Females had higher hair Zn, blood Mn, and blood As compared to males. Blood Mn and Se increased, while blood Pb decreased with age. Raw diet fed dogs had higher hair Zn and Se compared to dry or mixed diet fed dogs, and lower blood Mn compared to dry diet fed dogs. Dry and mixed diet fed dogs had higher blood Cd compared to raw diet fed dogs. Mixed diet fed dogs had higher hair Ca and Mg compared to raw or dry diet fed dogs, and higher hair Pb compared to dry diet fed dogs. Wild game consumption was associated with higher blood Pb, and rice consumption with higher blood As. In conclusion, hair provides an alternative for assessing Hg and Pb exposure, and major and trace elements status is affected by hair color, sex, age, and diet.
  • Elonheimo, Hanna Maria; Mattila, Tiina; Andersen, Helle Raun; Bocca, Beatrice; Ruggieri, Flavia; Haverinen, Elsi; Tolonen, Hanna (2022)
    Chronic obstructive pulmonary disease (COPD) is a slowly developing non-communicable disease (NCD), causing non-reversible obstruction and leading to marked morbidity and mortality. Besides traditional risk factors such as smoking, some environmental substances can augment the risk of COPD. The European Human Biomonitoring Initiative (HBM4EU) is a program evaluating citizens' exposure to various environmental substances and their possible health impacts. Within the HBM4EU, eighteen priority substances or substance groups were chosen. In this scoping review, seven of these substances or substance groups are reported to have an association or a possible association with COPD. Main exposure routes, vulnerable and high-exposure risk groups, and matrices where these substances are measured are described. Pesticides in general and especially organophosphate and carbamate insecticides, and some herbicides, lead (Pb), and polycyclic aromatic hydrocarbons (PAHs) showed an association, and cadmium (Cd), chromium (Cr and CrVI), arsenic (As), and diisocyanates, a possible association with COPD and/or decreased lung function. Due to long latency in COPD's disease process, the role of chemical exposure as a risk factor for COPD is probably underestimated. More research is needed to support evidence-based conclusions. Generally, chemical exposure is a growing issue of concern, and prompt action is needed to safeguard public health.
  • Pöntinen, Anna; Aalto-Araneda, Mariella; Lindström, Miia; Korkeala, Hannu (2017)
    Listeria monocytogenes is one of the most heat-resistant non-sporeforming food-borne pathogens and poses a notable risk to food safety, particularly when mild heat treatments are used in food processing and preparation. While general heat stress properties and response mechanisms of L. monocytogenes have been described, accessory mechanisms providing particular L. monocytogenes strains with the advantage of enhanced heat resistance are unknown. Here, we report plasmidmediated heat resistance of L. monocytogenes for the first time. This resistance is mediated by the ATP-dependent protease ClpL. We tested the survival of two wildtype L. monocytogenes strains-both of serotype 1/2c, sequence type ST9, and high sequence identity-at high temperatures and compared their genome composition in order to identify genetic mechanisms involved in their heat survival phenotype. L. monocytogenes AT3E was more heat resistant (0.0 CFU/ml log(10) reduction) than strain AL4E (1.4 CFU/ml log(10) reduction) after heating at 55 degrees C for 40 min. A prominent difference in the genome compositions of the two strains was a 58-kb plasmid (pLM58) harbored by the heat-resistant AT3E strain, suggesting plasmid-mediated heat resistance. Indeed, plasmid curing resulted in significantly decreased heat resistance (1.1 CFU/ml log(10) reduction) at 55 degrees C. pLM58 harbored a 2,115-bp open reading frame annotated as an ATP-dependent protease (ClpL)-encoding clpL gene. Introducing the clpL gene into a natively heat-sensitive L. monocytogenes strain (1.2 CFU/ml log(10) reduction) significantly increased the heat resistance of the recipient strain (0.4 CFU/ml log(10) reduction) at 55 degrees C. Plasmid-borne ClpL is thus a potential predictor of elevated heat resistance in L. monocytogenes. IMPORTANCE Listeria monocytogenes is a dangerous food pathogen causing the severe illness listeriosis that has a high mortality rate in immunocompromised individuals. Although destroyed by pasteurization, L. monocytogenes is among the most heat-resistant non-spore-forming bacteria. This poses a risk to food safety, as listeriosis is commonly associated with ready-to-eat foods that are consumed without thorough heating. However, L. monocytogenes strains differ in their ability to survive high temperatures, and comprehensive understanding of the genetic mechanisms underlying these differences is still limited. Whole-genome-sequence analysis and phenotypic characterization allowed us to identify a novel plasmid, designated pLM58, and a plasmid-borne ATP-dependent protease (ClpL), which mediated heat resistance in L. monocytogenes. As the first report on plasmid-mediated heat resistance in L. monocytogenes, our study sheds light on the accessory genetic mechanisms rendering certain L. monocytogenes strains particularly capable of surviving high temperatures-with plasmid-borne ClpL being a potential predictor of elevated heat resistance.
  • Michalek, Irmina Maria; Martinsen, Jan Ivar; Weiderpass, Elisabete; Hansen, Johnni; Sparen, Par; Tryggvadottir, Laufey; Pukkala, Eero (2019)
    Objectives: To determine whether occupational exposure to heavy metals (chromium (VI), iron, nickel, lead) and welding fumes is associated with the risk of kidney cancer and to describe whether other occupational exposures included in the Job Exposure Matrix of the Nordic Occupational Cancer (NOCCA) study are associated with the risk. Materials and methods: Nested case-control study among individuals registered in population censuses in Finland, Iceland, and Sweden in 1960-1990. A total of 59,778 kidney cancer cases, and 298,890 controls matched on sex, age, and country. Cumulative occupational exposures to metals (chromium (VI), iron, nickel, lead), welding fumes, and 24 other occupational exposure covariates, lagged 0, 10, and 20 years. Results: Overall, there was no or very little association between kidney cancer and exposures studied. The risk was elevated in individuals with high exposure to asbestos (OR 1.19, 95%CI 1.08-1.31). The risk was significantly decreased for individuals characterized with high perceived physical workload (OR 0.86, 95%CI 0.82-0.91), high exposure to ultraviolet radiation (OR 0.85, 95%CI 0.79-0.92), and high exposure to wood dust (OR 0.82, 95%CI 0.71-0.94). The risk of kidney cancer under the age of 59 was elevated in individuals with high exposure to nickel (OR 1.49, 95%CI 1.03-2.17). The risk of kidney cancer in age 59-74 years was elevated for individuals with high exposure to iron (OR 1.41, 95%CI 1.07-1.85), and high exposure to welding fumes (OR 1.43, 95%CI 1.09-1.89). Conclusions: The only markedly elevated risks of kidney cancer were seen for the highest exposures of nickel and iron/welding fumes in specific age strata.
  • Olsson, Sanna; Penacho, Vanessa; Puente-Sanchez, Fernando; Diaz, Silvia; Eduardo Gonzalez-Pastor, Jose; Aguilera, Angeles (2017)
    Transcriptomic sequencing together with bioinformatic analyses and an automated annotation process led us to identify novel phytochelatin synthase (PCS) genes from two extremophilic green algae (Chlamydomonas acidophila and Dunaliella acidophila). These genes are of intermediate length compared to known PCS genes from eukaryotes and PCS-like genes from prokaryotes. A detailed phylogenetic analysis gives new insight into the complicated evolutionary history of PCS genes and provides evidence for multiple horizontal gene transfer events from bacteria to eukaryotes within the gene family. A separate subgroup containing PCS-like genes within the PCS gene family is not supported since the PCS genes are monophyletic only when the PCS-like genes are included. The presence and functionality of the novel genes in the organisms were verified by genomic sequencing and qRT-PCR. Furthermore, the novel PCS gene in Chlamydomonas acidophila showed very strong induction by cadmium. Cloning and expression of the gene in Escherichia coli clearly improves its cadmium resistance. The gene in Dunaliella was not induced, most likely due to gene duplication.
  • Hartikainen, E. Samuel; Lankinen, Pauliina; Rajasärkkä, Johanna; Koponen, Hilkka; Virta, Marko; Hatakka, Annele; Kähkönen, Mika A. (2012)
  • Liu, Miao; Wang, Yuting; Liu, Xiucheng; Korpelainen, Helena; Li, Chunyang (2021)
    In this study, we intended to investigate the responses of rhizospheric bacterial communities of Populus cathayana to excess Zn under different planting patterns. The results suggested that intersexual and intrasexual interactions strongly affect plant growth and Zn extraction in both sexes, as well as rhizosphere-associated bacterial com-munity structures. Females had a higher capacity of Zn accumulation and translocation than males under all planting patterns. Males had lower Zn accumulation and translocation under intersexual than under intrasexual interaction; the contrary was true for females. Females harbored abundant Streptomyces and Nocardioides in their rhizosphere, similarly to males under intersexual interaction, but differed from single-sex males under excess Zn. Conversely, intersexual interaction increased the abundance of key taxa Actinomycetales and Betaproteobacteria in both sexes exposed to excess Zn. Males improved the female rhizospheric microenvironment by increasing the abundance of some key tolerance taxa of Chloroflexi, Proteobacteria and Actinobacteria in both sexes under excess Zn in intersexual interaction. These results indicated that the sex of neighboring plants affected sexual differences in the choice of specific bacterial colonizations for phytoextraction and tolerance to Zn-contaminated soils, which might regulate the spatial segregation and phytoremediation potential of P. cathayana females and males under heavy metal contaminated soils.
  • Lindroos, Antti-Jussi; Ryhti, Kira; Kaakkurivaara, Tomi; Uusitalo, Jori; Helmisaari, Helja-Sisko (2019)
    The aim of this study was to determine the effect of leaching of heavy metals (Cr, As, Cd, Cu, Ni, Pb, Zn, Co, Mo) and earth-alkaline metal, barium (Ba), on the percolation and ditch water quality from the forest roads that contained ash in the road structures. Water quality was studied in the immediate vicinity below the ash layers as well as deeper in the road structure. Water quality was also determined in the drainage water in ditches that crossed the forest roads. A mixture of wood and peat based fly ash was used in the road structures. The treatments were: 1) no ash, 2) a 15 cm layer of ash/gravel mixture, 3) a 20 cm layer of ash/ gravel mixture, 4) a 25 cm layer of ash, and 5) a 50 cm layer of ash. Large variation in the concentrations of Cr, As, Cu, Ni, Pb, Mo and Ba in the percolation water, even within the same treatment, caused difficulties to generalize the results. The concentrations of Cr, As, Ni, Pb, Mo and Ba in water samples were high in some treatment plot lysimeters containing ash compared to the control (no ash). On the other hand, many lysimeters had low and similar concentrations in water samples in the treatment plots containing ash compared to concentrations in the control plots. The ash in the roads did not affect the concentrations in the ditches. The leaching is uneven and seems to take place only from some parts of the ash layer. Risk for leaching is minimal if such parts are not widely spread.
  • Kohl, Lukas; Meng, Meng; de Vera, Joan; Bergquist, Bridget; Cooke, Colin A.; Hustings, Sarah; Jackson, Brian; Chow, Chung-Wai; Chan, Arthur W. H. (2019)
    Wildfires are increasing in prevalence and intensity and emit large quantities of persistent organic and inorganic pollutants. Recent fires have caused elevated concerns that residual pollutants in indoor environments pose a long‐term health hazard to residents, however, to date no studies have investigated how long fire‐derived pollutants are retained in indoor environments. We quantified polycyclic aromatic hydrocarbons (PAHs) and toxic trace elements in ground ashes from the 2016 wildland‐urban interface fires in Fort McMurray (Alberta, Canada) and in house dust from 64 homes. We document residual arsenic pollution from local building fires, but found no evidence that forest fire ash remained in households 14 months after the fire. Overall, house dust pollutant concentrations were equal or lower than in other locations unaffected by wildfires. Given the current and future concerns over wildfire impacts, this study provides importance evidence on the degree of their long‐term effects on the residential environment.
  • Scopetani, Costanza; Esterhuizen, Maranda; Cincinelli, Alessandra; Pflugmacher, Stephan (2020)
    Microplastics (MPs) are emerging pollutants, which are considered ubiquitous in aquatic ecosystems. The effects of MPs on aquatic biota are still poorly understood, and consequently, there is a need to understand the impacts that MPs may pose to organisms. In the present study, Tubifex tubifex, a freshwater oligochaete commonly used as a bioindicator of the aquatic environment, was exposed to fluorescent polyethylene microspheres (up to 10 µm in size) to test whether the oxidative stress status was affected. The mortality rate of T. tubifex, as well as the activities of the oxidative stress status biomarker enzymes glutathione reductase and peroxidase, were assessed. In terms of oxidative stress, no significant differences between the exposure organisms and the corresponding controls were detected. Even though the data suggest that polyethylene MPs and the selected concentrations did not pose a critical risk to T. tubifex, the previously reported tolerance of T. tubifex to environmental pollution should be taken into account and thus MPs as aquatic pollutants could still represent a threat to more sensitive oligochetes.
  • EFSA Panel Nutr Novel Foods Food A; Turck, Dominique; Heinonen, Marina (2021)
    Following a request from the European Commission, the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver an opinion on frozen and dried formulations from whole yellow mealworm (Tenebrio molitor larva) as a novel food (NF) pursuant to Regulation (EU) 2015/2283. The term yellow mealworm refers to the larval form of the insect species Tenebrio molitor. The NF comprises the frozen and freeze-dried formulations of the yellow mealworm, whole or in the form of powder. The frozen formulation consists mainly of water, crude protein and fat whereas the freeze-dried formulations of crude protein, fat, digestible carbohydrates and fibre (chitin). The Panel notes that the levels of contaminants in the NF depend on the occurrence levels of these substances in the insect feed. The Panel notes furthermore that there are no safety concerns regarding the stability of the NF if the NF complies with the proposed specification limits during its entire shelf-life. The dried formulations of the NF have a high protein content, although the true protein levels in the NF are overestimated when using the nitrogen-to-protein conversion factor of 6.25, due to the presence of non-protein nitrogen from chitin. The applicant proposed to use the NF as whole frozen or whole dried insect, or in the form of powder, added as an ingredient to various food products such as cereal bars, pasta, meat imitates and bakery products. The target population is the general population. The Panel notes that, considering that the NF will not be the sole source of dietary protein, and the composition of the NF and the proposed conditions of use, the consumption of the NF is not nutritionally disadvantageous. The submitted toxicity studies from the literature did not raise safety concerns. The Panel considers that the consumption of the NF may induce primary sensitisation and allergic reactions to yellow mealworm proteins and may cause allergic reactions in subjects with allergy to crustaceans and dust mites. Additionally, allergens from the feed may end up in the NF. The Panel concludes that the NF is safe under the proposed uses and use levels. (C) 2021 European Food Safety Authority. EFSA Journal published by John Wiley and Sons Ltd on behalf of European Food Safety Authority.
  • Chen, Juan; Han, Qingquan; Duan, Baoli; Korpelainen, Helena; Li, Chunyang (2017)
    Lead (Pb) contamination seriously threatens agroforestry production and safety. We aim to determine the interactive influence of Pb and sexual competition on the growth performance, photosynthetic and biochemical traits, ultrastructure and phytoremediation-related parameters of males and females. In the present study, eco-physiological responses and phytoremediation traits of Populus cathayana females and males were evaluated under interactive treatments of Pb and competition. There were significant sex-specific competition effects on biomass partition, photosynthetic activities, carbohydrate contents, nitrogen and phosphorus use efficiencies, ultrastructure and phytoremediation under Pb stress. When competition within the same sex was compared, females were more sensitive to Pb stress, while males possessed greater Pb contents, and a higher bioconcentration factor and tolerance index. Under inter-sexual competition, males alleviated competition effects through greater Pb absorption, and lower photosynthetic rates, nutrient use efficiencies and biomass accumulation. Moreover, Pb stress altered competition intensities of both sexes. Sex-specific competition and neighbor effects may regulate responses and phytoremediation under heavy metal stress in dioecious plants. In the future, more attention should be paid on the effects of inter- and intra-sexual competition on dioecious species in the process of forestation and restoration of contaminated soil.