Browsing by Subject "CANOPY"

Sort by: Order: Results:

Now showing items 1-12 of 12
  • Danquah, Jones Abrefa; Appiah, Mark; Ari, Pappinen (2011)
  • Nuterman, Roman; Mahura, Alexander; Baklanov, Alexander; Amstrup, Bjarne; Zakey, Ashraf (2021)
    In this study, the downscaling modeling chain for prediction of weather and atmospheric composition is described and evaluated against observations. The chain consists of interfacing models for forecasting at different spatiotemporal scales that run in a semi-operational mode. The forecasts were performed for European (EU) regional and Danish (DK) subregional-urban scales by the offline coupled numerical weather prediction HIRLAM and atmospheric chemical transport CAMx models, and for Copenhagen citystreet scale by the online coupled computational fluid dynamics M2UE model. The results showed elevated NOx and lowered O-3 concentrations over major urban, industrial, and transport land and water routes in both the EU and DK domain forecasts. The O-3 diurnal cycle predictions in both these domains were equally good, although O-3 values were closer to observations for Denmark. At the same time, the DK forecast of NOx and NO2 levels was more biased (with a better prediction score of the diurnal cycle) than the EU forecast, indicating a necessity to adjust emission rates. Further downscaling to the street level (Copenhagen) indicated that the NOx pollution was 2-fold higher on weekends and more than 5 times higher during the working day with high pollution episodes. Despite high uncertainty in road traffic emissions, the street-scale model effectively captured the NOx and NO2 diurnal cycles and the onset of elevated pollution episodes. The demonstrated downscaling system could be used in future online integrated meteorology and air quality research and operational forecasting, as well as for impact assessents on environment, population, and decision making for emergency preparedness and safety measures planning.
  • Ercan, Fabian E. Z.; Mikola, Juha; Silfver, Tarja; Myller, Kristiina; Vainio, Elina; Slowinska, Sandra; Slowinski, Michal; Lamentowicz, Mariusz; Blok, Daan; Wagner-Cremer, Friederike (2021)
    Numerous long-term, free-air plant growth facilities currently explore vegetation responses to the ongoing climate change in northern latitudes. Open top chamber (OTC) experiments as well as the experimental set-ups with active warming focus on many facets of plant growth and performance, but information on morphological alterations of plant cells is still scarce. Here we compare the effects of in-situ warming on leaf epidermal cell expansion in dwarf birch, Betula nana in Finland, Greenland, and Poland. The localities of the three in-situ warming experiments represent contrasting regions of B. nana distribution, with the sites in Finland and Greenland representing the current main distribution in low and high Arctic, respectively, and the continental site in Poland as a B. nana relict Holocene microrefugium. We quantified the epidermal cell lateral expansion by microscopic analysis of B. nana leaf cuticles. The leaves were produced in paired experimental treatment plots with either artificial warming or ambient temperature. At all localities, the leaves were collected in two years at the end of the growing season to facilitate between-site and within-site comparison. The measured parameters included the epidermal cell area and circumference, and using these, the degree of cell wall undulation was calculated as an Undulation Index (UI). We found enhanced leaf epidermal cell expansion under experimental warming, except for the extremely low temperature Greenland site where no significant difference occurred between the treatments. These results demonstrate a strong response of leaf growth at individual cell level to growing season temperature, but also suggest that in harsh conditions other environmental factors may limit this response. Our results provide evidence of the relevance of climate warming for plant leaf maturation and underpin the importance of studies covering large geographical scales.
  • Montagnani, Leonardo; Gruenwald, Thomas; Kowalski, Andrew; Mammarella, Ivan; Merbold, Lutz; Metzger, Stefan; Sedlak, Pavel; Siebicke, Lukas (2018)
    In eddy covariance measureinents, the storage flux represents the variation in time of the dry molar fraction of a given gas in the control volume representative of turbulent flux. Depending on the time scale considered, and on the height above ground of the measurements, it can either be a major component of the overall net ecosystem exchange or nearly negligible. Instrumental configuration and computational procedures must be optimized to measure this change at the time step used for the turbulent flux measurement Three different configurations are suitable within the Integrated Carbon Observation System infrastructure for the storage flux determination: separate sampling, subsequent sampling and mixed sampling. These configurations have their own advantages and disadvantages, and must be carefully selected based on the specific features of the considered station. In this paper, guidelines about number and distribution of vertical and horizontal sampling points are given. Details about suitable instruments, sampling devices, and computational procedures for the quantification of the storage flux of different GHG gases are also provided.
  • Alekseychik, P. K.; Korrensalo, A.; Mammarella, I.; Vesala, Timo; Tuittila, E. -S. (2017)
    Leaf area index (LAI) is an important parameter in natural ecosystems, representing the seasonal development of vegetation and photosynthetic potential. However, direct measurement techniques require labor-intensive field campaigns that are usually limited in time, while remote sensing approaches often do not yield reliable estimates. Here we propose that the bulk LAI of sedges (LAI(s)) can be estimated alternatively from a micrometeorological parameter, the aerodynamic roughness length for momentum (z(0)). z(0) can be readily calculated from high-response turbulence and other meteorological data, typically measured continuously and routinely available at ecosystem research sites. The regressions of LAI versus z(0) were obtained using the data from two Finnish natural sites representative of boreal fen and bog ecosystems. LAI(s) was found to be well correlated with z(0) and sedge canopy height. Superior method performance was demonstrated in the fen ecosystem where the sedges make a bigger contribution to overall surface roughness than in bogs.
  • Pulliainen, Jouni; Salminen, Miia; Heinilä, Kirsikka; Cohen, Juval; Hannula, Henna-Reetta (2014)
    This work aims at the development and validation of a zeroth order radiative transfer (RT) approach to describe the visible band (555 nm) reflectance of conifer-dominated boreal forest for the needs of remote sensing of snow. This is accomplished by applying airborne and mast-borne spectrometer data sets together with high-resolution information on forest canopy characteristics. In case of aerial spectrometer observations, tree characteristics determined from airborne LIDAR observations are applied to quantify the effect of forest canopy on scene reflectance. The results indicate that a simple RT model is feasible to describe extinction and reflectance properties of both homogeneous and heterogeneous forest scenes (corresponding to varying scales of satellite data footprints and varying structures of forest canopies). The obtained results also justify the application of apparent forest canopy transmissivity to describe the influence of forest to reflectance, as is done e.g. in the SCAmod method for the continental scale monitoring of fractional snow cover (FSC) from optical satellite data. Additionally, the feasibility of the zeroth order RT approach is compared with the use of linear mixing model of scene reflectance. Results suggest that the nonlinear RT approach describes the scene reflectance of a snow-covered boreal forest more realistically than the linear mixing model (in case when shadows on tree crowns and surface are not modeled separately, which is a relevant suggestion when considering the use of models for large scale snow mapping applications). (C) 2014 The Authors. Published by Elsevier Inc.
  • Kieloaho, Antti-Jussi; Pihlatie, Mari; Launiainen, Samuli; Kulmala, Markku; Riekkola, Marja-Liisa; Parshintsev, Jevgeni; Mammarella, Ivan; Vesala, Timo; Heinonsalo, Jussi (2017)
    Alkylamines are important precursors in secondary aerosol formation in the boreal forest atmosphere. To better understand the behavior and sources of two alkylamines, dimethylamine (DMA) and diethylamine (DEA), we estimated the magnitudes of soil-atmosphere fluxes of DMA and DEA using a gradient-diffusion approximation based on measured concentrations in soil solution and in the canopy air space. The ambient air concentration of DMA used in this study was a sum of DMA and ethylamine. To compute the amine fluxes, we first estimated the soil air space concentration from the measured soil solution amine concentration using soil physical (temperature, soil water content) and chemical (pH) state variables. Then, we used the resistance analogy to account for gas transport mechanisms in the soil, soil boundary layer, and canopy air space. The resulting flux estimates revealed that the boreal forest soil with a typical long-term mean pH 5.3 is a possible source of DMA (170 +/- 51 nmolm(-2) day(-1)) and a sink of DEA (-1.2 +/- 1.2 nmolm(-2) day(-1)). We also investigated the potential role of fungi as a reservoir for alkylamines in boreal forest soil. We found high DMA and DEA concentrations both in fungal hyphae collected from field humus samples and in fungal pure cultures. The highest DMA and DEA concentrations were found in fungal strains belonging to decay and ectomycorrhizal fungal groups, indicating that boreal forest soil and, in particular, fungal biomass may be important reservoirs for these alkylamines.
  • Atherton, Jon; Olascoaga, Benat; Alonso, Luis; Porcar-Castell, Albert (2017)
    Leaf Optical Properties (LOPs) convey information relating to temporally dynamic photosynthetic activity and biochemistry. LOPs are also sensitive to variability in anatomically related traits such as Specific Leaf Area (SLA), via the interplay of intra-leaf light scattering and absorption processes. Therefore, variability in such traits, which may demonstrate little plasticity over time, potentially disrupts remote sensing estimates of photosynthesis or biochemistry across space. To help to disentangle the various factors that contribute to the variability of LOPs, we defined baseline variation as variation in LOPs that occurs across space, but not time. Next we hypothesized that there were two main controls of potentially disruptive baseline spatial variability of photosynthetically-related LOPs at our boreal forest site: light environment and species. We measured photosynthetically-related LOPs in conjunction with morphological, biochemical, and photosynthetic leaf traits during summer and across selected boreal tree species and vertical gradients in light environment. We then conducted a detailed correlation analysis to disentangle the spatial factors that control baseline variability of leaf traits and, resultantly, LOPs. Baseline spatial variability of the Photochemical Reflectance Index (PRI) was strongly influenced by species and to a lesser extent light environment. Baseline variability of spectral fluorescence derived LOPs was less influenced by species; however at longer near-infrared wavelengths, light environment was an important control. In summary, remote sensing of chlorophyll fluorescence has good potential to detect variation in photosynthetic performance across space in boreal forests given reduced sensitivity to species related baseline variability in comparison to the PRI. Our results also imply that spatially coarse remote sensing observations are potentially unrepresentative of the full scope of natural variation that occurs within a boreal forest.
  • Rautiainen, Miina; Lukes, Petr (2015)
    Boreal forests exhibit strong seasonal dynamics in their reflectance spectra during the short, snow-free growing period. This short communication paper reports an analysis of the seasonality of boreal forest spectra from the end of snowmelt until the time of maximal leaf area. We apply a forest reflectance model (FRT) to estimate the seasonal contribution of understow vegetation to forest reflectance from a time series of three Earth Observing 1 (EO-1) Hyperion images acquired in May, June and July. The reflectance simulations are based on detailed seasonal series of leaf area index and understory spectra measurements carried out in ten stands at the Hyytiala Forestry Field Station in Finland. Our results show that the contribution of understory to boreal forest reflectance is high in the visible domain, but it drops at the red edge and stays relatively low and constant in near infrared (NIR). Throughout the growing season, the contribution of the understory remains approximately the same in the NIR domain, whereas larger changes can be observed in the visible domain. (C) 2015 The Authors. Published by Elsevier Inc.
  • Durand, Maxime; Matule, Baiba; Burgess, Alexandra J.; Robson, T. Matthew (2021)
    Light in canopies is highly dynamic since the strength and composition of incoming radiation is determined by the wind and the Sun's trajectory and by canopy structure. For this highly dynamic environment, we mathematically defined sunflecks as periods of high irradiance relative to the background light environment. They can account for a large proportion of the light available for photosynthesis. Based on high-frequency irradiance measurements with a CCD array spectroradiometer, we investigated how the frequency of measurement affects what we define as sunflecks. Do different plant canopies produce sunflecks with different properties? How does the spectral composition and strength of irradiance in the shade vary during a sunfleck? Our results suggest that high-frequency measurements improved our description of light fluctuations and led to the detection of shorter, more frequent and intense sunflecks. We found that shorter wind-induced sunflecks contribute most of the irradiance attributable to sunflecks, contrary to previous reports from both forests and crops. Large variations in sunfleck properties related to canopy depth and species, including distinct spectral composition under shade and sunflecks, suggest that mapping canopy structural traits may help us model photosynthesis dynamically.
  • Ahokas, Eero; Hyyppä, Juha; Yu, Xiaowei; Holopainen, Markus (2011)