Browsing by Subject "CARBON FOOTPRINT"

Sort by: Order: Results:

Now showing items 1-4 of 4
  • Russo, V.; Strever, A. E.; Ponstein, Helena J. (2021)
    Following the urgency to curb environmental impacts across all sectors globally, this is the first life cycle assessment of different wine grape farming practices suitable for commercial conventional production in South Africa, aiming at better understanding the potentials to reduce adverse effects on the environment and on human health.
  • Ponstein, Helena; Ghinoi, Stefano; Steiner, Bodo (2019)
    As wine supply chains become increasingly globalized, sustainability issues take on ever greater importance. This is the first study to analyse the environmental sustainability aspect of greenhouse gas (GHG) emissions from a global wine supply chain perspective, covering just over 90% of Finland's wine imports. Lacking substantial domestic production capacity, virtually all wine consumed in Finland is imported. Finland is comparable to its Nordic neighbours, Sweden and Norway, in this respect. The Life Cycle Assessment (LCA) methodology was combined with sensitivity and scenario analyses to investigate GHG emissions implications from prospective policy changes. Our results spotlight differences related to wine production in the eight main wine producing countries for the Finnish market (Australia, Chile, France, Germany, Italy, Spain, South Africa, and the United States), related logistics, and all packaging types for wine used in Finland (glass bottle, Bag-in-Box, PET bottle, beverage carton, and pouch). We found an average value of 1.23 kg CO2e for 0.75 L wine consumed in Finland, ranging from 0.59 kg CO2e for French wine in a bag-in-box packaging to 1.92 kg CO2e for Australian wine in a glass bottle. After identifying the main GHG emission hotspots in the wine supply chain, our scenario analyses highlight the effects of reducing glass bottle weight, moving away from glass packaging toward bag-inbox, increasing bulk wine export volumes to Finland, and following the European Commission's Energy 2020 strategy which targets increasing energy efficiency by 20 percent.
  • Sandström, Vilma; Valin, Hugo; Krisztin, Tamás; Havlík, Petr; Herrero, Mario; Kastner, Thomas (2018)
    International trade presents a challenge for measuring the greenhouse gas (GHG) emission footprint of human diets, because imported food is produced with different production efficiencies and sourcing regions differ in land use histories. We analyze how trade and countries of origin impact GHG footprint calculation for EU food consumption. We find that food consumption footprints can differ considerably between the EU countries with estimates varying from 610 to 1460 CO2-eq. cap−1 yr−1. These estimates include the GHG emissions from primary production, international trade and land use change. The share of animal products in the diet is the most important factor determining the footprint of food consumption. Embedded land use change in imports also plays a major role. Transition towards more plant-based diets has a great potential for climate change mitigation.
  • Deviatkin, Ivan; Khan, Musharof; Ernst, Elizabeth; Horttanainen, Mika (2019)
    Pallets are the tiny cogs in the machine that drive transportation in the global economy. The profusion of pallets in today's supply chain warrants the investigation and discussion of their respective environmental impacts. This paper reviews the life cycle assessment studies analyzing the environmental impacts of pallets with the intent of providing insights into the methodological choices made, as well as compiling the inventory data from the studies reviewed. The study is a meta-analysis of eleven scientific articles, two conference articles, two peer-reviewed reports, and one thesis. The review was implemented to identify the key methodological choices made in those studies, such as their goals, functional units, system boundaries, inventory data, life cycle impact assessment (LCIA) procedures, and results. The 16 studies reviewed cumulatively analyzed 43 pallets. Mostly pooled (n = 22/43), block-type (n = 13/43), and wooden (n = 32/43) pallets with dimensions of 1219 mm x 1016 mm or 48 in. x 40 in. (n = 15/43) were studied. Most of the studies represented pallet markets in the United States (n = 9/16). Load-based (e.g., 1000 kg of products delivered), trip-based (e.g., 1000 trips), and pallet-based (e.g., one pallet) functional units were declared. A trip-based functional unit seems the most appropriate for accounting of the function of the pallets, as its purpose is to carry goods and facilitate the transportation of cargo. A significant amount of primary inventory data on the production and repair of wooden and plastic pallets are available, yet there are significant variations in the data. Data on pallets made of wood-polymer composites was largely missing.