Browsing by Subject "CARBON SEQUESTRATION"

Sort by: Order: Results:

Now showing items 1-13 of 13
  • Vauhkonen, Jari; Ruotsalainen, Roope (2017)
    Determining optimal forest management to provide multiple goods and services, also referred to as Ecosystem Services (ESs), requires operational-scale information on the suitability of the forest for the provisioning of various ESs. Remote sensing allows wall-to-wall assessments and provides pixel data for a flexible composition of the management units. The purpose of this study was to incorporate models of ES provisioning potential in a spatial prioritization framework and to assess the pixel-level allocation of the land use. We tessellated the forested area in a landscape of altogether 7500 ha to 27,595 pixels of 48 x 48 m(2) and modeled the potential of each pixel to provide biodiversity, timber, carbon storage, and recreational amenities as indicators of supporting, provisioning, regulating, and cultural ESs, respectively. We analyzed spatial overlaps between the individual ESs, the potential to provide multiple ESs, and tradeoffs due to production constraints in a fraction of the landscape. The pixels considered most important for the individual ESs overlapped as much as 78% between carbon storage and timber production and up to 52.5% between the other ESs. The potential for multiple ESs could be largely explained in terms of forest structure as being emphasized to sparsely populated, spruce-dominated old forests with large average tree size. Constraining the production of the ESs in the landscape based on the priority maps, however, resulted in sub-optimal choices compared to an optimized production. Even though the land-use planning cannot be completed without involving the stakeholders' preferences, we conclude that the workflow described in this paper produced valuable information on the overlaps and tradeoffs of the ESs for the related decision support. (C) 2016 Elsevier B.V. All rights reserved.
  • Li, Quan; Song, Xinzhang; Yrjälä, Kim; Lv, Jianhua; Li, Yongfu; Wu, Jiasheng; Qin, Hua (2020)
    Increased reactive N deposition has widespread effects on terrestrial ecosystems, such as biodiversity loss, soil acidification, as well as stimulated plant growth. Empirical studies show that biochar often affects soil quality, crop productivity, soil microbial community composition and enzyme activities. However, the effect of biochar addition on forest soil bacterial community along with enzyme activities under nitrogen (N) deposition and its related mechanisms have not been well studied yet. Therefore, a 2-year field study was conducted to investigate the effects of biochar amendment (0, 20, 40 kg biochar ha−1 yr−1) on soil nutrients, enzyme activities, and bacterial community in a Torreya grandis orchard under different levels of N deposition (0, 30, 60 kg N ha−1 yr−1). N deposition significantly increased soil nutrients availability, such as N, phosphorus (P) and potassium (K), while biochar amendment led to significant increase in soil pH, organic carbon (SOC), total N (TN), total P (TP), available P (AP) and available K (AK). Both N deposition and biochar amendment significantly decreased the soil microbial biomass carbon (MBC), altered soil microbial community and enzyme activities significantly. Biochar addition increased the relative abundance of phylum Proteobacteria under different levels of N deposition, but had variable effect on Acidobacteria groups. Non-metric multidimensional scaling (NMDS) indicated that biochar amendment can mitigate the effect of N deposition on soil bacterial community composition and enzyme activities. Soil pH and SOC played an important role in shaping soil bacterial community composition, while available AP and AK contents significantly related to the variation of soil enzyme activities. Structure equation modeling (SEM) revealed that N deposition had negative effect on soil enzyme activities while biochar amendment can mitigate this negative effect through increasing AP content. Our result suggests that biochar amendment can mitigate the alteration of soil bacterial community and enzyme activities induced by N deposition, and this mitigation effect was linked to the alteration of soil physicochemical properties, especially the increased AP content. Thus, biochar amendment could be a promising way to develop sustainable forest management under increasing N deposition.
  • Sheehy, Jatta; Nuutinen, Visa; Six, Johan; Palojarvi, Ansa; Knuutila, Ossi; Kaseva, Janne; Regina, Kristiina (2019)
    By processing large quantities of crop residues, earthworms enhance the mineralization of organic matter but have also been shown to stabilize soil organic carbon (SOC) into soil fractions like microaggregates (53-250 mu m) within macroaggregates (> 250 mu m) especially in no-till soils. Our objective was to find direct evidence on the impact of an anecic, soil surface-feeding earthworm, Lumbricus terrestris L., on the redistribution of SOC and soil nitrogen (N) into macroaggregate-occluded soil fractions of boreal soils. We sampled soil (0-5 cm depth) from the middens of L. terrestris (mounds of collected residue and surface casts at the openings of its permanent burrows) and the adjacent non-midden (bulk) soil at three no-till sites in southern Finland: two clayey sites (sites 1-2) and one coarse textured site (site 3). Compared to bulk soil, the soil in L. terrestris middens featured general increase in aggregate size and content of SOC and N within the large macroaggregates (> 2000 mu m) at the clayey sites. The microaggregates within the large macroaggregates had accumulated more SOC and N in the midden soil especially at site 1 where 99% of the difference in total SOC between midden and bulk soil was associated with this type of SOC stabilization. At site 2, the increase in SOC found in the large macroaggregates was counteracted by a decrease in SOC in microaggregates within the small macroaggregates (250-2000 mu m). No differences in SOC stored in soil fractions were found between midden and non-midden soil at the coarse soil site 3 with higher top soil decomposition rate compared to sites 1 and 2. Across the study sites, the total amount of SOC was 6% higher in midden soil compared to the bulk soil. These results suggest L. terrestris mediates the storage of SOC and N into better protected soil fractions in clay soils under boreal conditions.
  • Kinnula, Sari; Toivonen, Marjaana; Soinne, Helena; Joona, Juuso; Kivela, Jukka (2020)
    There is a great need for sustainable fertilisers and soil amendments, as current fertilisation practices negatively affect the environment. Pulp mill sludges (PMS) could provide a means to replace fertilisers made using non-renewable resources while adding slowly decomposing organic material to the soil and utilising nutrients from the forest industry. This study tested the effects of composted and lime-stabilised mixed PMS (CPMS and LPMS) on wheat (Triticum aestivum) yields and residual effect on oat (Avena sativa) yields in the boreal region. A two-year field experiment included two CPMS and two LPMS treatments all with additional mineral fertilisation, a mineral fertiliser treatment, and a zero-control treatment. All the fertilisers increased yields. There were no differences in crop yields between CPMS, LPMS and mineral fertiliser treatments. However, some quality characteristics and nitrogen (N) uptake were lower with all or some PMS compared with mineral fertilisation. This result suggests that part of the mineral fertilisation for cereals could be replaced by using PMS, but more information on N mineralisation from sludges is needed.
  • Adamczyk, Bartosz; Sietio, Outi-Maaria; Biasi, Christina; Heinonsalo, Jussi (2019)
    See also the Commentary on this article by Hattenschwiler et al., 223: 5-7.
  • De Marco, Anna; Esposito, Fabrizio; Berg, Björn; Zarrelli, Armando; De Santo, Amalia Virzo (2018)
    Research Highlights: Plant cover drives the activity of the microbial decomposer community and affects carbon (C) sequestration in the soil. Despite the relationship between microbial activity and C sequestration in the soil, potential inhibition of soil microbial activity by plant cover has received little attention to date. Background and Objectives: Differences in soil microbial activity between two paired stands on soil at a very early stage of formation and a common story until afforestation, can be traced back to the plant cover. We hypothesized that in a black locust (Robinia pseudoacacia L.) stand the high-quality leaf litter of the tree, and that of the blackberry (Rubus fruticosus L.) understory had an inhibitory effect on soil microbial community resulting in lower mineralization of soil organic matter compared to the paired black pine (Pinus nigra Arn.) stand. Materials and Methods: We estimated potential mineralization rates (MR), microbial (MB), and active fungal biomass (AFB) of newly-shed litter, forest floor, and mineral soil. We tested the effects of litters' water extracts on soil MR, MB, AFB and its catabolic response profile (CRP). Results: Newly-shed litter of black locust had higher MR than that of blackberry and black pine; MR, MB, and AFB were higher in forest floor and in mineral soil under black pine than under black locust. Water extracts of black locust and blackberry litter had a negative effect on the amount, activity of microorganisms, and CRP. Conclusions: The results demonstrate the potential for black locust and blackberry litter to have a marked inhibitory effect on decomposer microorganisms that, in turn, reduce organic matter mineralization with possible consequences at the ecosystem level, by increasing C sequestration in mineral soil.
  • Kohl, Lukas; Myers-Pigg, Allison; Edwards, Kate A.; Billings, Sharon A.; Warren, Jamie; Podrebarac, Frances; Ziegler, Susan E. (2021)
    Plant litter chemistry is altered during decomposition but it remains unknown if these alterations, and thus the composition of residual litter, will change in response to climate. Selective microbial mineralization of litter components and the accumulation of microbial necromass can drive litter compositional change, but the extent to which these mechanisms respond to climate remains poorly understood. We addressed this knowledge gap by studying needle litter decomposition along a boreal forest climate transect. Specifically, we investigated how the composition and/or metabolism of the decomposer community varies with climate, and if that variation is associated with distinct modifications of litter chemistry during decomposition. We analyzed the composition of microbial phospholipid fatty acids (PLFA) in the litter layer and measured natural abundance δ13C-PLFA values as an integrated measure of microbial metabolisms. Changes in litter chemistry and δ13C values were measured in litterbag experiments conducted at each transect site. A warmer climate was associated with higher litter nitrogen concentrations as well as altered microbial community structure (lower fungi:bacteria ratios) and microbial metabolism (higher δ13C-PLFA). Litter in warmer transect regions accumulated less aliphatic-C (lipids, waxes) and retained more O-alkyl-C (carbohydrates), consistent with enhanced 13C-enrichment in residual litter, than in colder regions. These results suggest that chemical changes during litter decomposition will change with climate, driven primarily by indirect climate effects (e.g. greater nitrogen availability and decreased fungi:bacteria ratios) rather than direct temperature effects. A positive correlation between microbial biomass δ13C values and 13C-enrichment during decomposition suggests that change in litter chemistry is driven more by distinct microbial necromass inputs than differences in the selective removal of litter components. Our study highlights the role that microbial inputs during early litter decomposition can play in shaping surface litter contribution to soil organic matter as it responds to climate warming effects such as greater nitrogen availability.
  • Husa, Miikka Helmer; Kosenius, Anna-Kaisa (2021)
    In boreal commercial forests, carbon sequestration, climate change adaptation, and biodiversity conservation can be promoted through various measures. This study examines the factors affecting non-industrial private forest (NIPF) owners' preferences for such forest management practices. A systematic literature review serves as a reference for the empirical analysis of a survey data on the Finnish NIPF owners' stated willingness to adopt thirteen distinct forest management practices. Binary logit models reveal socio-demographic factors, site-specific characteristics, previous forest management, and motivations for forest ownership that are associated with the stated adoption of management practices. Especially, environmental and financial motivations play an important role in decisions concerning forest management practices. Statistically significant factors vary depending on the forest management practice, reflecting the NIPF owner heterogeneity. Younger and highly educated forest owners are more supportive for various management practices that promote biodiversity, while older forest owners are reluctant towards deadwood retention. The results underline the importance of accounting for heterogeneous preferences regarding forest management practices when designing and implementing policies and advisory services aiming at enhancing carbon sequestration, climate change adaptation, or biodiversity in boreal commercial forests.
  • Adamczyk, Bartosz; Sietio, Outi-Maaria; Strakova, Petra; Prommer, Judith; Wild, Birgit; Hagner, Marleena; Pihlatie, Mari; Fritze, Hannu; Richter, Andreas; Heinonsalo, Jussi (2019)
    Boreal forests are ecosystems with low nitrogen (N) availability that store globally significant amounts of carbon (C), mainly in plant biomass and soil organic matter (SOM). Although crucial for future climate change predictions, the mechanisms controlling boreal C and N pools are not well understood. Here, using a three-year field experiment, we compare SOM decomposition and stabilization in the presence of roots, with exclusion of roots but presence of fungal hyphae and with exclusion of both roots and fungal hyphae. Roots accelerate SOM decomposition compared to the root exclusion treatments, but also promote a different soil N economy with higher concentrations of organic soil N compared to inorganic soil N accompanied with the build-up of stable SOM-N. In contrast, root exclusion leads to an inorganic soil N economy (i.e., high level of inorganic N) with reduced stable SOM-N buildup. Based on our findings, we provide a framework on how plant roots affect SOM decomposition and stabilization.
  • Li, Jichen; Hernandez-Ramirez, Guillermo; Kiani, Mina; Quideau, Sylvie; Smith, Elwin G.; Janzen, Henry; Larney, Francis J.; Puurveen, Dick (2018)
    Soil organic matter (SOM) is a major driver of key agroecosystem functions. Our objective was to examine the dynamics of organic matter in whole soil, particulate (POM; > 53 mu m size), and mineral-associated (MAOM) fractions under varying crop rotations and nutrient managements at two long-term experimental sites (Breton and Lethbridge). Soil samples were collected from simple (2 yr) and complex (5 or 6 yr) crop rotations at the 5 - 10 cm depth. We found associations between SOM pools versus microbial community and soil aggregation. Compared to cropped soils, an adjacent forest exhibited a significantly higher soil total organic carbon (TOC) and a shift in SOM fractions with substantially higher POM. However, the forest soil had the lowest microbial biomass C among all the assessed land use systems (P <0 .05), suggesting that other factors than the amount of labile SOM (i.e., POM-C) were controlling the microbial community. When contrasted to simple 2 yr rotations, the complex rotations including perennials and legumes significantly raised TOC and soil total nitrogen as well as the stable SOM fraction (i.e., MAOM-C and -N)consistently for both Breton and Lethbridge sites. Our findings highlight that varying land managements have profound feedbacks on soil quality as mediated by alterations in long-term SOM dynamics.
  • Sitzia, T.; Campagnaro, T.; Kotze, David Johannes; Nardi, S.; Ertani, A. (2018)
    The abandonment of agricultural use is a common driver of spontaneous reforestation by alien trees. The N-fixing black locust (Robinia pseudoacacia L.) is a major alien invader of old fields in Europe. Here we show that canopy dominance by this tree may filter the frequency distribution of plant functional traits in the understory of secondary woodlands. Higher soil C/N ratio and available P are associated with black locust stands, while higher soil phenols associate with native tree stands. These environmental effects result in differences in understory flowering periods, reproduction types and life forms. Our findings emphasize the effect of a major alien tree on functional plant trait composition in the early stages of spontaneous reforestation of abandoned lands, implying the development of a novel forest ecosystem on a large geographical scale.
  • Kotze, David Johan; Ghosh, Subhadip; Hui, Nan; Jumpponen, Ari; Lee, Benjamin P. Y-H; Lu, Changyi; Lum, Shawn; Pouyat, Richard; Szlavecz, Katalin; Wardle, David A.; Yesilonis, Ian; Zheng, Bangxiao; Setala, Heikki (2021)
    An increasingly urbanized world is one of the most prominent examples of global environmental change. Across the globe, urban parks are designed and managed in a similar way, resulting in visually pleasing expansions of lawn interspersed with individually planted trees of varying appearances and functional traits. These large urban greenspaces have the capacity to provide various ecosystem services, including those associated with soil physicochemical properties. Our aim was to explore whether soil properties in urban parks diverge underneath vegetation producing labile or recalcitrant litter, and whether the impact is affected by climatic zone (from a boreal to temperate to tropical city). We also compared these properties to those in (semi)natural forests outside the cities to assess the influence of urbanization on plant-trait effects. We showed that vegetation type affected percentage soil organic matter (OM), total carbon (C) and total nitrogen (N), but inconsistently across climatic zones. Plant-trait effects were particularly weak in old parks in the boreal and temperate zones, whereas in young parks in these zones, soils underneath the two tree types accumulated significantly more OM, C and N compared to lawns. Within climatic zones, anthropogenic drivers dominated natural ones, with consistently lower values of organic-matter-related soil properties under trees producing labile or recalcitrant litter in parks compared to forests. The dominating effect of urbanization is also reflected in its ability to homogenize soil properties in parks across the three cities, especially in lawn soils and soils under trees irrespective of functional trait. Our study demonstrates that soil functions that relate to carbon and nitrogen dynamics-even in old urban greenspaces where plant-soil interactions have a long history-clearly diverged from those in natural ecosystems, implying a long-lasting influence of anthropogenic drivers on soil ecosystem services.
  • Groundstroem, Fanny; Juhola, Sirkku (2021)
    Increased use of bioenergy, driven by ambitious climate and energy policies, has led to an upsurge in international bioenergy trade. Simultaneously, it is evident that every node of the bioenergy supply chain, from cultivation of energy crops to production of electricity and heat, is vulnerable to climate change impacts. However, climate change assessments of bioenergy supply chains neither account for the global nature of the bioenergy market, nor the complexity and dynamic interconnectivity between and within different sub-systems in which the bioenergy supply chain is embedded, thereby neglecting potential compounding and cascading impacts of climate change. In this paper, systems thinking is utilised to develop an analytical framework to address this gap, and aided by causal loop diagrams, cascading impacts of climate change are identified for a case study concerning imports of wood pellets from the United States to the European Union. The findings illustrate how the complexity and interconnectivity of the wood pellet supply system predispose the supply chain to various cascading climate change impacts stemming from environmental, social, political and economic domains, and highlight the value of using system-based analysis tools for studying such complex and dynamic systems.