Browsing by Subject "CARBON-DIOXIDE"

Sort by: Order: Results:

Now showing items 1-20 of 78
  • Reichenau, Tim G.; Korres, Wolfgang; Schmidt, Marius; Graf, Alexander; Welp, Gerhard; Meyer, Nele; Stadler, Anja; Brogi, Cosimo; Schneider, Karl (2020)
    The development and validation of hydroecological land-surface models to simulate agricultural areas require extensive data on weather, soil properties, agricultural management, and vegetation states and fluxes. However, these comprehensive data are rarely available since measurement, quality control, documentation, and compilation of the different data types are costly in terms of time and money. Here, we present a comprehensive dataset, which was collected at four agricultural sites within the Rur catchment in western Germany in the framework of the Transregional Collaborative Research Centre 32 (TR32) "Patterns in Soil-Vegetation-Atmosphere Systems: Monitoring, Modeling and Data Assimilation". Vegetation-related data comprise fresh and dry biomass (green and brown, predominantly per organ), plant height, green and brown leaf area index, phenological development state, nitrogen and carbon content (overall > 17 000 entries), and masses of harvest residues and regrowth of vegetation after harvest or before planting of the main crop (> 250 entries). Vegetation data including LAI were collected in frequencies of 1 to 3 weeks in the years 2015 until 2017, mostly during overflights of the Sentinel 1 and Radarsat 2 satellites. In addition, fluxes of carbon, energy, and water (> 180 000 half-hourly records) measured using the eddy covariance technique are included. Three flux time series have simultaneous data from two different heights. Data on agricultural management include sowing and harvest dates as well as information on cultivation, fertilization, and agrochemicals (27 management periods). The dataset also includes gap-filled weather data (> 200 000 hourly records) and soil parameters (particle size distributions, carbon and nitrogen content; > 800 records). These data can also be useful for development and validation of remote-sensing products. The dataset is hosted at the TR32 database (https://www.tr32db.uni-koeln.de/data.php?dataID=1889, last access: 29 September 2020) and has the DOI https://doi.org/10.5880/TR32DB.39 (Reichenau et al., 2020).
  • Song, Chaoqing; Luan, Junwei; Xu, Xiaofeng; Ma, Minna; Aurela, Mika; Lohila, Annalea; Mammarella, Ivan; Alekseychik, Pavel; Tuittila, Eeva-Stiina; Gong, Wei; Chen, Xiuzhi; Meng, Xianhong; Yuan, Wenping (2020)
    Wetlands are one of the most important terrestrial ecosystems for land-atmosphere CH4 exchange. A new process-based, biophysical model to quantify CH4 emissions from natural wetlands was developed and integrated into a terrestrial ecosystem model (Integrated Biosphere Simulator). The new model represents a multisubstance system (CH4, O-2, CO2, and H-2) and describes CH4 production, oxidation, and three transport processes (diffusion, plant-mediated transport, and ebullition). The new model uses several critical microbial mechanisms to represent the interaction of anaerobic fermenters and homoacetogens, hydrogenotrophic, and acetoclastic methanogens, and methanotrophs in CH4 production and oxidation. We applied the model to 24 different wetlands globally to compare the simulated CH4 emissions to observations and conducted a sensitivity analysis. The results indicated that (1) for most sites, the model was able to capture the magnitude and variation of observed CH4 emissions under varying environmental conditions; (2) the parameters that regulate dissolved organic carbon and acetate production, and acetoclastic methanogenesis had the significant impact on simulated CH4 emissions; (3) the representation of the process components of CH4 cycling showed that CH4 oxidation was about half or more of CH4 production, and plant-mediated transport was the dominant pathway at most sites; and (4) the seasonality of simulated CH4 emissions can be controlled by soil temperature, water table position, or combinations thereof.
  • Sabrekov, A. F.; Glagolev, M. V.; Alekseychik, P. K.; Smolentsev, B. A.; Terentieva, I. E.; Krivenok, L. A.; Maksyutov, S. S. (2016)
    This study combines a literature survey and field observation data in an ad initio attempt to construct a process-based model of methane sink in upland soils including both the biological and physical aspects of the process. Comparison is drawn between the predicted sink rates and chamber measurements in several forest and grassland sites in the southern part of West Siberia. CH4 flux, total respiration, air and soil temperature, soil moisture, pH, organic content, bulk density and solid phase density were measured during a field campaign in summer 2014. Two datasets from literature were also used for model validation. The modeled sink rates were found to be in relatively good correspondence with the values obtained in the field. Introduction of the rhizospheric methanotrophy significantly improves the match between the model and the observations. The Q10 values of methane sink observed in the field were 1.2-1.4, which is in good agreement with the experimental results from the other studies. Based on modeling results, we also conclude that soil oxygen concentration is not a limiting factor for methane sink in upland forest and grassland ecosystems.
  • Watts, J. D.; Kimball, J. S.; Parmentier, F. J. W.; Sachs, T.; Rinne, J.; Zona, D.; Oechel, W.; Tagesson, T.; Jackowicz-Korczynski, M.; Aurela, M. (2014)
  • Katul, Gabriel; Mammarella, Ivan; Grönholm, Tiia; Vesala, Timo (2018)
    Two ideas regarding the structure of turbulence near a clear air-water interface are used to derive a waterside gas transfer velocity k(L) for sparingly and slightly soluble gases. The first is that k(L) is proportional to the turnover velocity described by the vertical velocity structure function D-ww(r), where r is separation distance between two points. The second is that the scalar exchange between the air-water interface and the waterside turbulence can be suitably described by a length scale proportional to the Batchelor scale l(B) = Sc-1/2, where Sc is the molecular Schmidt number and eta is the Kolmogorov microscale defining the smallest scale of turbulent eddies impacted by fluid viscosity. Using an approximate solution to the von Karman-Howarth equation predicting D-ww(r) in the inertial and viscous regimes, prior formulations for k(L) are recovered including (i) kL = root 2/15Sc(-1/2)v(K), v(K) is the Kolmogorov velocity defined by the Reynolds number v(K)eta/nu = 1 and nu is the kinematic viscosity of water; (ii) surface divergence formulations; (iii) k(L) alpha Sc(-1/2)u(*), where u(*) is the waterside friction velocity; (iv) k(L) alpha Sc-1/2 root g nu/u(*) for Keulegan numbers exceeding a threshold needed for long-wave generation, where the proportionality constant varies with wave age, g is the gravitational acceleration; and (v) k(L) = root 2/15Sc(-1/2) (nu g beta(o)q(o))(1/4) in free convection, where q(o) is the surface heat flux and beta(o) is the thermal expansion of water. The work demonstrates that the aforementioned k(L) formulations can be recovered from a single structure function model derived for locally homogeneous and isotropic turbulence.
  • Keronen, Petri; Reissell, Anni; Chevallier, Frederic; Siivola, Erkki; Pohja, Toivo; Hiltunen, Veijo; Hatakka, Juha; Aalto, Tuula; Rivier, Leonard; Ciais, Philippe; Jordan, Armin; Hari, Pertti; Viisanen, Yrjo; Vesala, Timo (2014)
  • Zhang-Turpeinen, Huizhong; Kivimaenpaa, Minna; Berninger, Frank; Koster, Kajar; Zhao, Peng; Zhou, Xuan; Pumpanen, Jukka (2021)
    The amplification of global warming in the Northern regions results in a higher probability of wildfires in boreal forests. On the forest floor, wildfires have long-term effects on vegetation composition as well as soil and its microbial communities. A large variety of biogenic volatile organic compounds (BVOCs) such as isoprene, monoterpenes, sesquiterpenes have been observed to be emitted from soil and understory vegetation of boreal forest floor. Ultimately, the fire-induced changes in the forest floor affect its BVOC fluxes, and the recovery of the forest floor determines the quantity and quality of BVOC fluxes. However, the effects of wildfires on forest floor BVOC fluxes are rarely studied. Here we conducted a study of the impacts of post-fire succession on forest floor BVOC fluxes along a 158-year fire chronosequence in boreal Scots pine stands near the northern timberline in north-eastern Finland throughout a growing season. We determined the forest floor BVOC fluxes and investigated how the environmental and ground vegetation characteristics, soil respiration rates, and soil microbial and fungal biomass are associated with the BVOC fluxes during the post-fire succession. The forest floor was a source of diverse BVOCs. Monoterpenes (MTs) were the largest group of emitted BVOCs. We observed forest age-related differences in the forest floor BVOC fluxes along the fire chronosequence. The forest floor BVOC fluxes decreased with the reduction in ground vegetation coverage resulted from wildfire, and the decreased fluxes were also connected to a decrease in microbial activity as a result of the loss of plant roots and soil organic matter. The increase in BVOC fluxes was associated with the recovery of aboveground plant coverage and soils. Our results suggested taking into consideration the implications of BVOC flux variations on the atmospheric chemistry and climate feedbacks.
  • Kiuru, Petri; Ojala, Anne; Mammarella, Ivan; Heiskanen, Jouni; Erkkila, Kukka-Maaria; Miettinen, Heli; Vesala, Timo; Huttula, Timo (2019)
    Freshwater lakes are important in carbon cycling, especially in the boreal zone where many lakes are supersaturated with the greenhouse gas carbon dioxide (CO2) and emit it to the atmosphere, thus ventilating carbon originally fixed by the terrestrial system. The exchange of CO2 between water and the atmosphere is commonly estimated using simple wind-based parameterizations or models of gas transfer velocity (k). More complex surface renewal models, however, have been shown to yield more correct estimates of k in comparison with direct CO2 flux measurements. We incorporated four gas exchange models with different complexity into a vertical process-based physico-biochemical lake model, MyLake C, and assessed the performance and applicability of the alternative lake model versions to simulate air-water CO2 fluxes over a small boreal lake. None of the incorporated gas exchange models significantly outperformed the other models in the simulations in comparison to the measured near-surface CO2 concentrations or respective air-water CO2 fluxes calculated directly with the gas exchange models using measurement data as input. The use of more complex gas exchange models in the simulation, on the contrary, led to difficulties in obtaining a sufficient gain of CO2 in the water column and thus resulted in lower CO2 fluxes and water column CO2 concentrations compared to the respective measurement-based values. The inclusion of sophisticated and more correct models for air-water CO2 exchange in process-based lake models is crucial in efforts to properly assess lacustrine carbon budgets through model simulations in both single lakes and on a larger scale. However, finding higher estimates for both the internal and external sources of inorganic carbon in boreal lakes is important if improved knowledge of the magnitude of CO2 evasion from lakes is included in future studies on lake carbon budgets.
  • Gao, Y.; Markkanen, T.; Thum, T.; Aurela, M.; Lohila, A.; Mammarella, I.; Kämäräinen, M.; Hagemann, S.; Aalto, T. (2016)
    Droughts can have an impact on forest functioning and production, and even lead to tree mortality. However, drought is an elusive phenomenon that is difficult to quantify and define universally. In this study, we assessed the performance of a set of indicators that have been used to describe drought conditions in the summer months (June, July, August) over a 30-year period (1981-2010) in Finland. Those indicators include the Standardized Precipitation Index (SPI), the Standardized Precipitation-Evapotranspiration Index (SPEI), the Soil Moisture Index (SMI), and the Soil Moisture Anomaly (SMA). Herein, regional soil moisture was produced by the land surface model JSBACH of the Max Planck Institute for Meteorology Earth System Model (MPI-ESM). Results show that the buffering effect of soil moisture and the associated soil moisture memory can impact on the onset and duration of drought as indicated by the SMI and SMA, while the SPI and SPEI are directly controlled by meteorological conditions. In particular, we investigated whether the SMI, SMA and SPEI are able to indicate the Extreme Drought affecting Forest health (EDF), which we defined according to the extreme drought that caused severe forest damages in Finland in 2006. The EDF thresholds for the aforementioned indicators are suggested, based on the reported statistics of forest damages in Finland in 2006. SMI was found to be the best indicator in capturing the spatial extent of forest damage induced by the extreme drought in 2006. In addition, through the application of the EDF thresholds over the summer months of the 30-year study period, the SPEI and SMA tended to show more frequent EDF events and a higher fraction of influenced area than SMI. This is because the SPEI and SMA are standardized indicators that show the degree of anomalies from statistical means over the aggregation period of climate conditions and soil moisture, respectively. However, in boreal forests in Finland, the high initial soil moisture or existence of peat often prevent the EDFs indicated by the SPEI and SMA to produce very low soil moisture that could be indicated as EDFs by the SMI. Therefore, we consider SMI is more appropriate for indicating EDFs in boreal forests. The selected EDF thresholds for those indicators could be calibrated when there are more forest health observation data available. Furthermore, in the context of future climate scenarios, assessments of EDF risks in northern areas should, in addition to climate data, rely on a land surface model capable of reliable prediction of soil moisture.
  • Stoy, P. C.; Richardson, A. D.; Baldocchi, D. D.; Katul, G. G.; Stanovick, J.; Mahecha, M. D.; Reichstein, M.; Detto, M.; Law, B. E.; Wohlfahrt, G.; Arriga, N.; Campos, J.; McCaughey, J. H.; Montagnani, L.; U, K. T. Paw; Sevanto, S.; Williams, M. (2009)
  • Mäki, Mari; Aaltonen, Hermanni; Heinonsalo, Jussi; Hellén, Heidi; Pumpanen, Jukka; Bäck, Jaana (2019)
    Vegetation emissions of volatile organic compounds (VOCs) are intensively studied world-wide, because oxidation products of VOCs contribute to atmospheric processes. The overall aim of this study was to identify and quantify the VOCs that originate from boreal podzolized forest soil at different depths, in addition to studying the association of VOC concentrations with VOC and CO2 fluxes from the boreal forest floor.
  • Lintunen, Anna; Lindfors, Lauri; Kolari, Pasi; Juurola, Eija; Nikinmaa, Eero; Hölttä, Tuomo (2014)
  • Kallioinen, Minna; Posti, Jussi P.; Rahi, Melissa; Sharma, Deepak; Katila, Ari; Grönlund, Juha; Vahlberg, Tero; Frantzén, Janek; Olkkola, Klaus T.; Saari, Teijo I.; Takala, Riikka (2020)
    Abstract Background Cerebral autoregulation is often impaired after aneurysmal subarachnoid haemorrhage (aSAH). Dexmedetomidine is being increasingly used, but its effects on cerebral autoregulation in patients with aSAH have not been studied before. Dexmedetomidine could be a useful sedative in patients with aSAH as it enables neurological assessment during the infusion. The aim of this preliminary study was to compare the effects of dexmedetomidine on dynamic and static cerebral autoregulation with propofol and/or midazolam in patients with aSAH. Methods Ten patients were recruited. Dynamic and static cerebral autoregulation were assessed using transcranial Doppler ultrasound during propofol and/or midazolam infusion and then during three increasing doses of dexmedetomidine infusion (0.7, 1.0 and 1.4 µg/kg/h). Transient hyperaemic response ratio (THRR) and strength of autoregulation (SA) were calculated to assess dynamic cerebral autoregulation. Static rate of autoregulation (sRoR)% was calculated by using noradrenaline infusion to increase the mean arterial pressure 20 mmHg above the baseline. Results Data from 9 patients were analysed. Compared to baseline, we found no statistically significant changes in THRR or sROR%. THRR was (mean±SD) 1.20 ±0.14, 1.17±0.13(p=0.93), 1.14±0.09 (p=0.72) and 1.19±0.18 (p=1.0) and sROR% was 150.89±84.37, 75.22±27.75 (p=0.08), 128.25±58.35 (p=0.84) and 104.82±36.92 (p=0.42) at baseline and during 0.7, 1.0 and 1.4 µg/kg/h dexmedetomidine infusion, respectively. Dynamic SA was significantly reduced after 1.0 µg/kg/h dexmedetomidine (p=0.02). Conclusions Compared to propofol and/or midazolam, dexmedetomidine did not alter static cerebral autoregulation in aSAH patients, whereas a significant change was observed in dynamic SA. Further and larger studies with dexmedetomidine in aSAH patients are warranted.
  • Tupek, B.; Minkkinen, K.; Pumpanen, J.; Vesala, T.; Nikinmaa, E. (2015)
  • Kalliokoski, Tuomo; Makela, Annikki; Fronzek, Stefan; Minunno, Francesco; Peltoniemi, Mikko (2018)
    We are bound to large uncertainties when considering impacts of climate change on forest productivity. Studies formally acknowledging and determining the relative importance of different sources of this uncertainty are still scarce, although the choice of the climate scenario, and e.g. the assumption of the CO2 effects on tree water use can easily result in contradicting conclusions of future forest productivity. In a large scale, forest productivity is primarily driven by two large fluxes, gross primary production (GPP), which is the source for all carbon in forest ecosystems, and heterotrophic respiration. Here we show how uncertainty of GPP projections of Finnish boreal forests divides between input, mechanistic and parametric uncertainty. We used the simple semi-empirical stand GPP and water balance model PRELES with an ensemble of downscaled global circulation model (GCM) projections for the 21st century under different emissions and forcing scenarios (both RCP and SRES). We also evaluated the sensitivity of assumptions of the relationships between atmospheric CO2 concentration (C-a), photosynthesis and water use of trees. Even mean changes in climate projections of different meteorological variables for Finland were so high that it is likely that the primary productivity of forests will increase by the end of the century. The scale of productivity change largely depends on the long-term C-a fertilization effect on GPP and transpiration. However, GCM variability was the major source of uncertainty until 2060, after which emission scenario/pathway became the dominant factor. Large uncertainties with a wide range of projections can make it more difficult to draw ecologically meaningful conclusions especially on the local to regional scales, yet a thorough assessment of uncertainties is important for drawing robust conclusions.
  • Ulsig, Laura; Nichol, Caroline J.; Huemmrich, Karl F.; Landis, David R.; Middleton, Elizabeth M.; Lyapustin, Alexei I.; Mammarella, Ivan; Levula, Janne; Porcar-Castell, Albert (2017)
    Long-term observations of vegetation phenology can be used to monitor the response of terrestrial ecosystems to climate change. Satellite remote sensing provides the most efficient means to observe phenological events through time series analysis of vegetation indices such as the Normalized Difference Vegetation Index (NDVI). This study investigates the potential of a Photochemical Reflectance Index (PRI), which has been linked to vegetation light use efficiency, to improve the accuracy of MODIS-based estimates of phenology in an evergreen conifer forest. Timings of the start and end of the growing season (SGS and EGS) were derived from a 13-year-long time series of PRI and NDVI based on a MAIAC (multi-angle implementation of atmospheric correction) processed MODIS dataset and standard MODIS NDVI product data. The derived dates were validated with phenology estimates from ground-based flux tower measurements of ecosystem productivity. Significant correlations were found between the MAIAC time series and ground-estimated SGS (R-2 = 0.36-0.8), which is remarkable since previous studies have found it difficult to observe inter-annual phenological variations in evergreen vegetation from satellite data. The considerably noisier NDVI product could not accurately predict SGS, and EGS could not be derived successfully from any of the time series. While the strongest relationship overall was found between SGS derived from the ground data and PRI, MAIAC NDVI exhibited high correlations with SGS more consistently (R-2 > 0.6 in all cases). The results suggest that PRI can serve as an effective indicator of spring seasonal transitions, however, additional work is necessary to confirm the relationships observed and to further explore the usefulness of MODIS PRI for detecting phenology.
  • Heiskanen, Jouni J.; Mammarella, Ivan; Haapanala, Sami; Pumpanen, Jukka; Vesala, Timo; Macintyre, Sally; Ojala, Anne (2014)
  • Pospelov, Alexey S.; Puskarjov, Martin; Kaila, Kai; Voipio, Juha (2020)
    Abstract Aim To study brain-sparing physiological responses in a rodent model of birth asphyxia which reproduces the asphyxia-defining systemic hypoxia and hypercapnia. Methods Steady or intermittent asphyxia was induced for 15-45 min in anesthetized 6- and 11-days old rats and neonatal guinea pigs using gases containing 5% or 9% O2 plus 20% CO2 (in N2). Hypoxia and hypercapnia were induced with low O2 and high CO2, respectively. Oxygen partial pressure (PO2) and pH were measured with microsensors within the brain and subcutaneous (?body?) tissue. Blood lactate was measured after asphyxia. Results Brain and body PO2 fell to apparent zero with little recovery during 5% O2 asphyxia and 5% or 9% O2 hypoxia, and increased more than twofold during 20% CO2 hypercapnia. Unlike body PO2, brain PO2 recovered rapidly to control after a transient fall (rat), or was slightly higher than control (guinea pig) during 9% O2 asphyxia. Asphyxia (5% O2) induced a respiratory acidosis paralleled by a progressive metabolic (lact)acidosis that was much smaller within than outside the brain. Hypoxia (5% O2) produced a brain-confined alkalosis. Hypercapnia outlasting asphyxia suppressed pH recovery and prolonged the post-asphyxia PO2 overshoot. All pH changes were accompanied by consistent shifts in the blood-brain barrier potential. Conclusion Regardless of brain maturation stage, hypercapnia can restore brain PO2 and protect the brain against metabolic acidosis despite compromised oxygen availability during asphyxia. This effect extends to the recovery phase if normocapnia is restored slowly, and it is absent during hypoxia, demonstrating that exposure to hypoxia does not mimic asphyxia.
  • Ahmat, Yacoub Mahamat; Madadi, Sara; Charbonneau, Luc; Kaliaguine, Serge (2021)
    Terpene epoxides are considered as potential primary intermediates in the synthesis of numerous green polymers including epoxy resins, polycarbonates, nonisocyanate polyurethanes and even some polyamides. In this chapter we describe recent efforts from our group to develop catalytic and noncatalytic processes for terpene epoxidation using a variety of oxidizing agents and process intensification methods. Most experimental tests deal with limonene epoxidation with applicability to some other terpenes also demonstrated.