Sort by: Order: Results:

Now showing items 1-4 of 4
  • Cailleret, Maxime; Dakos, Vasilis; Jansen, Steven; Robert, Elisabeth M.R.; Aakala, Tuomas; Amoroso, Mariano M.; Antos, Joe A.; Bigler, Christof; Bugmann, Harald; Caccianaga, Marco; Camarero, Jesus-Julio; Cherubini, Paolo; Goeya, Marie R.; Cufar, Katarina; Das, Adrian J.; Davi, Hendrik; Gea-Izquierdo, Guillermo; Gillner, Sten; Haavik, Laurel J.; Hartmann, Henrik; Heres, Ana-Maria; Hultine, Kevin R.; Janda, Pavel; Kane, Jeffrey M.; Kharuk, Vlachelsav I.; Kitzberger, Thomas; Klein, Tamir; Levanic, Tom; Linares, Juan-Carlos; Lombardi, Fabio; Mäkinen, Harri; Meszaros, Ilona; Metsaranta, Juha M.; Oberhuber, Walter; Papadopoulos, Andreas; Petritan, Any Mary; Rohner, Brigitte; Sanguesa-Barreda, Gabriel; Smith, Jeremy M.; Stan, Amanda B.; Stojanovic, Dejan B.; Laura Suarez, Maria; Svoboda, Miroslav; Trotsiuk, Volodymyr; Villalba, Ricardo; Westwood, Alana R.; Wyckoff, Peter H.; Martinez-Vilalta, Jordi (2019)
    Tree mortality is a key driver of forest dynamics and its occurrence is projected to increase in the future due to climate change. Despite recent advances in our understanding of the physiological mechanisms leading to death, we still lack robust indicators of mortality risk that could be applied at the individual tree scale. Here, we build on a previous contribution exploring the differences in growth level between trees that died and survived a given mortality event to assess whether changes in temporal autocorrelation, variance, and synchrony in time-series of annual radial growth data can be used as early warning signals of mortality risk. Taking advantage of a unique global ring-width database of 3065 dead trees and 4389 living trees growing together at 198 sites (belonging to 36 gymnosperm and angiosperm species), we analyzed temporal changes in autocorrelation, variance, and synchrony before tree death (diachronic analysis), and also compared these metrics between trees that died and trees that survived a given mortality event (synchronic analysis). Changes in autocorrelation were a poor indicator of mortality risk. However, we found a gradual increase in inter- annual growth variability and a decrease in growth synchrony in the last similar to 20 years before mortality of gymnosperms, irrespective of the cause of mortality. These changes could be associated with drought-induced alterations in carbon economy and allocation patterns. In angiosperms, we did not find any consistent changes in any metric. Such lack of any signal might be explained by the relatively high capacity of angiosperms to recover after a stress-induced growth decline. Our analysis provides a robust method for estimating early-warning signals of tree mortality based on annual growth data. In addition to the frequently reported decrease in growth rates, an increase in inter-annual growth variability and a decrease in growth synchrony may be powerful predictors of gymnosperm mortality risk, but not necessarily so for angiosperms.
  • Johansson, Karin S. L.; El-Soda, Mohamed; Pagel, Ellen; Meyer, Rhonda C.; Toldsepp, Kadri; Nilsson, Anders K.; Brosche, Mikael; Kollist, Hannes; Uddling, Johan; Andersson, Mats X. (2020)
    Background and Aims The stomatal conductance (g(s)) of most plant species decreases in response to elevated atmospheric CO2 concentration. This response could have a significant impact on plant water use in a future climate. However, the regulation of the CO2 induced stomatal closure response is not fully understood. Moreover, the potential genetic links between short-term (within minutes to hours) and long-term (within weeks to months) responses of g(s) to increased atmospheric CO2 have not been explored. Methods We used Arabidopsis thaliana recombinant inbred lines originating from accessions Col-0 (strong CO2 response) and C24 (weak CO2 response) to study short- and long-term controls of g(s) Quantitative trait locus (QTL) mapping was used to identify loci controlling short- and long-term g(s) responses to elevated CO2 as well as other stomata-related traits. Key Results Short- and long-term stomatal responses to elevated CO2 were significantly correlated. Both short-and long-term responses were associated with a QTL, at the end of chromosome 2. The location of this QTL was confirmed using near-isogonic lines and it was fine-mapped to a 410-kb region. The QTL did not correspond to any known gene involved in stomatal closure and had no effect on the responsiveness to abscisic acid. Additionally, we identified numerous other loci associated with stomatal regulation. Conclusions We identified and confirmed the effect of a strong QTL corresponding to a yet unknown regulator of stomatal closure in response to elevated CO2 concentration. The correlation between short- and long-term stomatal CO2 responses and the genetic link between these traits highlight the importance of understanding guard cell CO2 signalling to predict and manipulate plant water use in a world with increasing atmospheric CO2 concentration. This study demonstrates the power of using natural variation to unravel the genetic regulation of complex traits.
  • Schiestl-Aalto, Pauliina; Stangl, Zsofia; Tarvainen, Lasse; Wallin, Göran; Marshall, John; Mäkelä, Annikki (2021)
    Interpreting phloem carbohydrate or xylem tissue carbon isotopic composition as measures of water-use efficiency or past tree productivity requires in-depth knowledge of the factors altering the isotopic composition within the pathway from ambient air to phloem contents and tree ring. One of least understood of these factors is mesophyll conductance (g(m)). We formulated a dynamic model describing the leaf photosynthetic pathway including seven alternative g(m) descriptions and a simple transport of sugars from foliage down the trunk. We parameterised the model for a boreal Scots pine stand and compared simulated g(m) responses with weather variations. We further compared the simulated delta C-13 of new photosynthates among the different g(m) descriptions and against measured phloem sugar delta C-13. Simulated g(m) estimates of the seven descriptions varied according to weather conditions, resulting in varying estimates of phloem delta C-13 during cold/moist and warm/dry periods. The model succeeded in predicting a drought response and a postdrought release in phloem sugar delta C-13 indicating suitability of the model for inverse prediction of leaf processes from phloem isotopic composition. We suggest short-interval phloem sampling during and after extreme weather conditions to distinguish between mesophyll conductance drivers for future model development.
  • Muktadir, Md Abdul; Adhikari, Kedar Nath; Merchant, Andrew; Belachew, Kiflemariam; Vandenberg, Albert; Stoddard, Fred; Khazaei, Hamid (2020)
    Grain legumes are commonly used for food and feed all over the world and are the main source of protein for over a billion people worldwide, but their production is at risk from climate change. Water deficit and heat stress both significantly reduce the yield of grain legumes, and the faba bean is considered particularly susceptible. The genetic improvement of faba bean for drought adaptation (water deficit tolerance) by conventional methods and molecular breeding is time-consuming and laborious, since it depends mainly on selection and adaptation in multiple sites. The lack of high-throughput screening methodology and low heritability of advantageous traits under environmental stress challenge breeding progress. Alternatively, selection based on secondary characters in a controlled environment followed by field trials is successful in some crops, including faba beans. In general, measured features related to drought adaptation are shoot and root morphology, stomatal characteristics, osmotic adjustment and the efficiency of water use. Here, we focus on the current knowledge of biochemical and physiological markers for legume improvement that can be incorporated into faba bean breeding programs for drought adaptation.