Browsing by Subject "CARBOXYLIC-ACIDS"

Sort by: Order: Results:

Now showing items 1-12 of 12
  • Hänninen, Vesa; Murdachaew, Garold; Nathanson, Gilbert M.; Gerber, R. Benny; Halonen, Lauri (2018)
    Ab initio molecular dynamics simulations of formic acid (FA) dimer colliding with liquid water at 300 K have been performed using density functional theory. The two energetically lowest FA dimer isomers were collided with a water slab at thermal and high kinetic energies up to 68k(B)T. Our simulations agree with recent experimental observations of nearly a complete uptake of gas-phase FA dimer: the calculated average kinetic energy of the dimers immediately after collision is 5 +/- 4% of the incoming kinetic energy, which compares well with the experimental value of 10%. Simulations support the experimental observation of no delayed desorption of FA dimers following initial adsorption. Our analysis shows that the FA dimer forms hydrogen bonds with surface water molecules, where the hydrogen bond order depends on the dimer structure, such that the most stable isomer possesses fewer FA-water hydrogen bonds than the higher energy isomer. Nevertheless, even the most stable isomer can attach to the surface through one hydrogen bond despite its reduced hydrophilicity. Our simulations further show that the probability of FA dimer dissociation is increased by high collision energies, the dimer undergoes isomerization from the higher energy to the lowest energy isomer, and concerted double-proton transfer occurs between the FA monomers. Interestingly, proton transfer appears to be driven by the release of energy arising from such isomerization, which stimulates those internal vibrational degrees of freedom that overcome the barrier of a proton transfer.
  • Murdachaew, Garold; Nathanson, Gilbert M.; Gerber, R. Benny; Halonen, Lauri (2016)
    Deprotonation of organic acids at aqueous surfaces has important implications in atmospheric chemistry and other disciplines, yet it is not well-characterized or understood. This article explores the interactions of formic acid (FA), including ionization, in collisions at the air-water interface. Ab initio molecular dynamics simulations with dispersion-corrected density functional theory were used. The 8-50 picosecond duration trajectories all resulted in the adsorption of FA within the interfacial region, with no scattering, absorption into the bulk or desorption into the vapor. Despite the known weak acidity of FA, spontaneous deprotonation of the acid was observed at the interface on a broad picosecond timescale, ranging from a few picoseconds typical for stronger acids to tens of picoseconds. Deprotonation occurred in 4% of the trajectories, and was followed by Grotthuss proton transfer through adjacent water molecules. Both sequential and ultrafast concerted proton transfer were observed. The formation of contact ion pairs and solvent-separated ion pairs, and finally the reformation of neutral FA, both trans and cis conformers, occurred in different stages of the dynamics. To better understand the deprotonation mechanisms at the interface compared with the process in bulk water, we used well-tempered metadynamics to obtain deprotonation free energy profiles. While in bulk water FA deprotonation has a free energy barrier of 14.8 kJ mol(-1), in fair agreement with the earlier work, the barrier at the interface is only 7.5 kJ mol(-1). Thus, at the air-water interface, FA may dissociate more rapidly than in the bulk. This finding can be rationalized with reference to the dissimilar aqueous solvation and hydrogen-bonding environments in the interface compared to those in bulk liquid water.
  • Driver, Gordon W.; Sprakel, Lisette J. M.; Kilpelainen, Ilkka; Schuur, Boelo (2021)
    Isothermal titration calorimetry (ITC) experiments were performed for investigation of binary mixtures comprised of the Bronsted superbase DBN with hydrogen ethanoate (AcOH). The heat of mixing (H-E) profile was recorded at (343.15 +/- 0.1) K and fitted with a 5-parameter Redlich-Kister (RK) polynomial. RK fit parameters were subsequently used to quantify partial molar heats of mixing, x(i)H(i)(E), for each component i. ITC-based complexometric titration data for the binary mixtures were recorded separately in methyl isobutyl ketone (mibk) and dodecane, to investigate the energetics of non random clustering phenomena. Variable temperature H-1-NMR in combination with ATR-FTIR spectroscopic analyses were employed in parallel for elucidation and verification of liquid state ion speciation. These investigations reveal a strongly non ideal system, and indicate "superbase" character of DBN is preserved for specific compositions where stoichiometric ionic liquids (ILs) form. Available ion speciation has been found to include [DBN-H](+), [AcO] as well as mu 2 -hydrogen-bridged, hydrogen-bonded homoassociate anions, of the type [H(OAc)(2)], with double liquid salt formation characterising various compositions based on spectroscopic determinations. (C) 2021 The Authors. Published by Elsevier Ltd.
  • Pinto de Magalhães, Joana; Franko, Nina; Raboni, Samanta; Annunziato, Giannamaria; Tammela, Päivi; Bruno, Agostino; Bettati, Stefano; Mozzarelli, Andrea; Pieroni, Marco; Cambanini, Barbara; Costantino, Gabriele (2020)
    In Upsilon-proteobacteria and Actinomycetales, cysteine biosynthetic enzymes are indispensable during persistence and become dispensable during growth or acute infection. The biosynthetic machinery required to convert inorganic sulfur into cysteine is absent in mammals; therefore, it is a suitable drug target. We searched for inhibitors of Salmonella serine acetyltransferase (SAT), the enzyme that catalyzes the rate-limiting step of L-cysteine biosynthesis. The virtual screening of three ChemDiv focused libraries containing 91 243 compounds was performed to identify potential SAT inhibitors. Scaffold similarity and the analysis of the overall physicochemical properties allowed the selection of 73 compounds that were purchased and evaluated on the recombinant enzyme. Six compounds displaying an IC50
  • Stukelj, Jernej; Agopov, Mikael; Yliruusi, Jouko; Strachan, Clare J.; Svanbäck, Sami (2020)
    Salt formation is a well-established method to increase the solubility of ionizable drug candidates. However, possible conversion of salt to its original form of free acid or base - disproportionation - can have a drastic effect on the solubility and consequently the bioavailability of a drug. Therefore, during the salt selection process, the salt dissolution behavior should be well understood. Improved understanding could be achieved by a method that enables simultaneous screening of small sample amounts and detailed dissolution process analysis. Here, we use a machine-vision-based single-particle analysis (SPA) method to successfully determine the pH-solubility profile, intrinsic solubility, common-ion effect, pKa, pHmax, and Ksp values of three model compounds in a fast and low sample consumption (<1 mg) manner. Moreover, the SPA method enables, with a particle- scale resolution, in situ observation of the disproportionation process and its immediate effect on the morphology and solubility of dissolving species. In this study, a potentially higher energy thermodynamic solid-state form of diclofenac free acid and an intriguing conversion to liquid verapamil free base were observed upon disproportionation of the respective salts. As such, the SPA method offers a low sample consumption platform for fast yet elaborate characterization of the salt dissolution behavior.
  • Bianco, Angelica; Passananti, Monica; Brigante, Marcello; Mailhot, Gilles (2020)
    This review paper describes briefly the cloud aqueous phase composition and deeply its reactivity in the dark and mainly under solar radiation. The role of the main oxidants (hydrogen peroxide, nitrate radical, and hydroxyl radical) is presented with a focus on the hydroxyl radical, which drives the oxidation capacity during the day. Its sources in the aqueous phase, mainly through photochemical mechanisms with H2O2, iron complexes, or nitrate/nitrite ions, are presented in detail. The formation rate of hydroxyl radical and its steady state concentration evaluated by different authors are listed and compared. Finally, a paragraph is also dedicated to the sinks and the reactivity of the HO center dot radical with the main compounds found in the cloud aqueous phase. This review presents an assessment of the reactivity in the cloud aqueous phase and shows the significant potential impact that this medium can have on the chemistry of the atmosphere and more generally on the climate.
  • Sasikala, V.; Sajan, D.; Chaitanya, K.; Sundius, Tom; Devi, T. Uma (2017)
    In this study, single crystals of urea ninhydrin monohydrate (UNMH) have been grown by slow evaporation method. The grown crystals were characterized by FT-IR, FT-Raman and UV-Vis-NIR spectroscopies. The Kurtz and Perry powder method was employed to confirm the near-zero SHG efficiency of the as-grown centrosymmetric UNMH crystal. The third order nonlinearity of the crystal has been studied by the open aperture Z-scan method. The nonlinear absorption coefficient is calculated and the potentiality of UNMH in optical limiting applications is identified. The molecular geometry and the origin of optical non-linearity at the molecular level have been investigated by the density functional theory. The normal coordinate analysis was carried out to assign the molecular vibrational modes. Vibrational spectral studies confirms the presence of weak O-H ... O and moderate O-H ... O type hydrogen bonds in the molecule as well as O-H ... O, N-H ... O and blue-shifted C-H ... O type H-bonds in the crystal. The intramolecular charge transfer interactions and the electronic absorption mechanisms have been discussed. The static and the dynamic values of hyperpolarizabilities for UNMH were estimated theoretically by DFT methods. (C) 2017 Elsevier B.V. All rights reserved.
  • Laaksonen, Tiina; Heikkinen, Sami; Wähälä, Kristiina (2015)
    (+)-Dehydroabietylamine (1a), the novel derivatives (2a-6a) and their NTf2 salts (1b-6b) were tested as chiral NMR solvating agents for the resolution of enantiomers of the model compound Mosher's acid (7) and its n-Bu4N salt (8). Best enantiomeric discrimination of 7 was obtained using bisdehydroabietyl-amino-N-1, N-2-ethane-1,2-diamine (6a), and of 8 using N-(dehydroabietyl)-2-(dehydroabietylamino) ethanaminium bis((trifluoromethyl)-sulfonyl)-amide (6b). For the maximal resolution of enantiomers of 8, 1.0 eq. of 6b were needed. However, 0.5 eq. of 6a sufficed for the maximal resolution of enantiomers of 7. Enantiomeric excess studies were successfully conducted using 6a and 6b. The capability of 6a and 6b to recognize the enantiomers of various a-substituted carboxylic acids and their n-Bu4N salts were examined. Best resolutions were observed for aliphatic and aromatic carboxylic acids bearing an electronegative alpha-substituent. Now the ee studies on such non-aromatic carboxylic acids are also feasible.
  • Laaksonen, Tiina; Heikkinen, Sami; Wähälä, Kristiina (2015)
    Chiral tertiary and quaternary amine solvating agents for NMR spectroscopy were synthesized from the wood resin derivative (+)-dehydroabietylamine (2). The resolution of enantiomers of model compounds [Mosher's acid (3) and its n-Bu4N salt (4)] (guests) by (+)-dehydroabietyl-N,N-dimethylmethanamine (5) and its ten different ammonium salts (hosts) was studied. The best results with 3 were obtained using 5 while with 4 the best enantiomeric resolution was obtained using (+)-dehydroabietyl-N,N-dimethylmethanaminium bis(trifluoromethane-sulfonimide) (6). The compounds 5 and 6 showed a 1:1 complexation behaviour between the host and guest. The capability of 5 and 6 to recognize the enantiomers of various -substituted carboxylic acids and their n-Bu4N salts in enantiomeric excess (ee) determinations was demonstrated. A modification of the RES-TOCSY NMR pulse sequence is described, allowing the enhancement of enantiomeric discrimination when the resolution of multiplets is insufficient.
  • Hyttinen, Noora; Heshmatnezhad, Reyhaneh; Elm, Jonas; Kurten, Theo; Prisle, Nonne L. (2020)
    We have used the COSMOtherm program to estimate activity coefficients and solubilities of mono- and alpha, omega-dicarboxylic acids and water in binary acid-water systems. The deviation from ideality was found to be larger in the systems containing larger acids than in the systems containing smaller acids. COnductor-like Screening MOdel for Real Solvents (COSMO-RS) underestimates experimental monocarboxylic acid activity coefficients by less than a factor of 2, but experimental water activity coefficients are underestimated more especially at high acid mole fractions. We found a better agreement between COSMOtherm-estimated and experimental activity coefficients of monocarboxylic acids when the water clustering with a carboxylic acid and itself was taken into account using the dimerization, aggregation, and reaction extension (COSMO-RS-DARE) of COSMOtherm. COSMO-RS-DARE is not fully predictive, but fit parameters found here for water-water and acid-water clustering interactions can be used to estimate thermodynamic properties of monocarboxylic acids in other aqueous solvents, such as salt solutions. For the dicarboxylic acids, COSMO-RS is sufficient for predicting aqueous solubility and activity coefficients, and no fitting to experimental values is needed. This is highly beneficial for applications to atmospheric systems, as these data are typically not available for a wide range of mixing states realized in the atmosphere, due to a lack of either feasibility of the experiments or sample availability. Based on effective equilibrium constants of different clustering reactions in the binary solutions, acid dimer formation is more dominant in systems containing larger dicarboxylic acids (C-5-C-8), while for monocarboxylic acids (C-1-C-6) and smaller dicarboxylic acids (C-2-C-4), hydrate formation is more favorable, especially in dilute solutions.
  • Beaumont, Marco; Jusner, Paul; Gierlinger, Notburga; King, Alistair; Potthast, Antje; Rojas, Orlando J.; Rosenau, Thomas (2021)
    The remarkable efficiency of chemical reactions is the result of biological evolution, often involving confined water. Meanwhile, developments of bio-inspired systems, which exploit the potential of such water, have been so far rather complex and cumbersome. Here we show that surface-confined water, inherently present in widely abundant and renewable cellulosic fibres can be utilised as nanomedium to endow a singular chemical reactivity. Compared to surface acetylation in the dry state, confined water increases the reaction rate and efficiency by 8 times and 30%, respectively. Moreover, confined water enables control over chemical accessibility of selected hydroxyl groups through the extent of hydration, allowing regioselective reactions, a major challenge in cellulose modification. The reactions mediated by surface-confined water are sustainable and largely outperform those occurring in organic solvents in terms of efficiency and environmental compatibility. Our results demonstrate the unexploited potential of water bound to cellulosic nanostructures in surface esterifications, which can be extended to a wide range of other nanoporous polymeric structures and reactions. The efficiency of chemical reactions in biological systems is often connected to the properties of confined water, but the developments and applications of artificial mimicking systems are impeded by the complexity of the biological systems. Here, the authors show how surface bound water in nanoporous cellulosic fibers can increase the reaction rate of surface acetylation reactions and enable regioselectivity of the reaction