Browsing by Subject "CAVITATION"

Sort by: Order: Results:

Now showing items 1-2 of 2
  • Mustonen, Joonas Aleksi; Tommiska, Oskari Mikael; Holmström, Axi; Rauhala, Timo; Moilanen, Petro; Gritsevich, M.; Salmi, Ari; Haeggström, Edward (2021)
    Pipe fouling is a challenging problem in many industrial applications. Current cleaning techniques require halting the production during the cleaning phase and the existing methods are unable to do targeted cleaning, even though fouling is often localized to certain areas inside the pipeline. To address this issue, we use FEM-simulated, time-reversed signals to focus ultrasound power onto a pre-determined location: a fouled pipe residing inside a Plexiglas container. Ultrasound cleaning with similar acoustic power was compared to the time-reversal enhanced method in terms of cleaning efficiency. The cleaning efficiency was determined by measuring how much fouling, by mass, both protocols removed from the surface of a Plexiglas pipe, using similar input electric power and equal cleaning time. Our results indicate that the proposed time-reversal-based technique removes three times more fouling than the standard ultrasound cleaning without focusing. The study extends our previous paper on FEM-based time-reversal focusing [1].
  • Lintunen, Anna; Losso, Adriano; Aalto, Juho; Chan, Tommy; Hölttä, Teemu; Mayr, Stefan (2020)
    Ice formation and propagation in the xylem of plants is a complex process. During freezing of xylem sap, gases dissolved in liquid sap are forced out of the ice lattice due to their low solubility in ice, and supersaturation of xylem sap as well as low water potential (Psi) are induced at the ice-liquid interface. Supersaturation of gases near the ice front may lead to bubble formation and potentially to cavitation and/or to burst of gases driven out from the branch. In this study, we investigated the origin and dynamics of freezing-related gas bursts and ultrasonic acoustic emissions (AEs), which are suggested to indicate cavitation. Picea abies (L.) H. Karst. and Salix caprea L. branch segments were exposed to frost cycles in a temperature test chamber, and CO2 efflux (indicating gas bursts) and AEs were recorded. On freezing, two-thirds of the observed gas bursts originated from the xylem and only one-third from the bark. Simultaneously with gas bursts, AEs were detected. Branch Psi affected both gas bursts and AEs, with high gas burst in saturated and dry samples but relevant AEs only in the latter. Repeated frost cycles led to decreasing gas burst volumes and AE activity. Experiments revealed that the expanding ice front in freezing xylem was responsible for observed gas bursts and AEs, and that branch Psi influenced both processes. Results also indicated that gas bursts and cavitation are independently induced by ice formation, though both may be relevant for bubble dynamics during freezing.