Browsing by Subject "CD40L"

Sort by: Order: Results:

Now showing items 1-4 of 4
  • Zafar, Sadia; Sorsa, Suvi; Siurala, Mikko; Hemminki, Otto; Havunen, Riikka; Cervera-Carrascon, Victor; Santos, Joao Manuel; Wang, Hongjie; Lieber, Andre; De Gruijl, Tanja; Kanerva, Anna; Hemminki, Akseli (2018)
    Dendritic cells (DCs) are crucial players in promoting immune responses. Logically, adoptive DC therapy is a promising approach in cancer immunotherapy. One of the major obstacles in cancer immunotherapy in general is the immunosuppressive tumor microenvironment, which hampers the maturation and activation of DCs. Therefore, human clinical outcomes with DC therapy alone have been disappointing. In this study, we use fully serotype 3 oncolytic adenovirus Ad3-hTERT-CMV-hCD40L, expressing human CD40L, to modulate the tumor microenvironment with subsequently improved function of DCs. We evaluated the synergistic effects of Ad3-hTERT-CMV-hCD40L and DCs in the presence of human peripheral blood mononuclear cells ex vivo and in vivo. Tumors treated with Ad3-hTERT-CMV-hCD40L and DCs featured greater antitumor effect compared with unarmed virus or either treatment alone. 100% of humanized mice survived to the end of the experiment, while mice in all other groups died by day 88. Moreover, adenovirally-delivered CD40L induced activation of DCs, leading to induction of Th1 immune responses. These results support clinical trials with Ad3-hTERT-CMV-hCD40L in patients receiving DC therapy.
  • Hirvinen, Mari; Heiskanen, Raita; Oksanen, Minna; Pesonen, Saila; Liikanen, Ilkka; Joensuu, Timo; Kanerva, Anna; Cerullo, Vincenzo; Hemminki, Akseli (2013)
  • Martins, Beatriz (Helsingin yliopisto, 2020)
    According to the latest estimations, cancer is the second leading cause of death worldwide. Despite the significant advances in the range of drugs and treatment modalities to treat cancer, the number of deaths is estimated to continue rising, posing serious challenges for the patients, their families, and the healthcare systems. Conventional treatments tend to be associated with severe adverse side effects and treatment resistance. Consequently, safer and more efficient therapy options are urgently needed, especially for the treatment of metastatic tumors refractory to conventional treatments. A new and revolutionizing field in oncology is immunotherapy, in which oncolytic viruses are included. Oncolytic viruses have an inherent or acquired selectivity to replicate exclusively in tumor cells, ultimately destroying them. Simultaneously, they also activate the dormant host’s immune system to fight against the tumor. Adenoviruses, particularly, have shown to be safe, inducing only mild adverse side effects in clinical trials, making them a great candidate for further clinical development. Adenoviruses can be genetically modified to increase their infectivity or improve the anti-cancer immune responses induced by the virus, e.g., through the expression of immunostimulatory molecules. The focus of this thesis was to develop and characterize several genetically modified oncolytic adenoviruses expressing either OX40L alone or OX40L and CD40L, two co-stimulatory molecules capable of engaging both the innate and adaptive arms of the immune system to fight the tumor. The insertion of the transgenes into the E3B-14.7k region of the Ad5/3-∆24 adenovector plasmid was performed using Gibson Assembly® cloning approach. After successful cloning, the recombinant viral genomes were transfected into A549 cells for viral amplification, followed by CsCl purification to produce a high titer viral preparation. The expression of the transgenes was studied in vitro by ELISA and functional assays, showing promising expression levels of functional OX40L and CD40L. However, when the infectivity and virus killing potency were analyzed, in vitro by immunocytochemistry and MTS assay; and in vivo using an immunodeficient mouse model, the data showed that the cloned viruses performed sub-optimally when compared to the control unarmed virus (Ad5/3-∆24). These findings suggest that the insertion of the two transgenes in place of the E3-14.7k gene was detrimental to the fitness of the virus.
  • Kuryk, Lukasz; Moller, Anne-Sophie W.; Vuolanto, Antti; Pesonen, Sari; Garofalo, Mariangela; Cerullo, Vincenzo; Jaderberg, Magnus (2019)
    Oncolytic adenoviruses can trigger lysis of tumor cells, induce an antitumor immune response, bypass classical chemotherapeutic resistance strategies of tumors, and provide opportunities for combination strategies. A major challenge is the development of scalable production methods for viral seed stocks and sufficient quantities of clinical grade viruses. Because of promising clinical signals in a compassionate use program (Advanced Therapy Access Program) which supported further development, we chose the oncolytic adenovirus ONCOS-401 as a testbed for a new approach to scale up. We found that the best viral production conditions in both T-175 flasks and HYPERFlasks included A549 cells grown to 220,000 cells/cm(2) (80% confluency), with ONCOS-401 infection at 30 multiplicity of infection (MOI), and an incubation period of 66 h. The Lysis A harvesting method with benzonase provided the highest viral yield from both T-175 and HYPERFlasks (10,887 +/- 100 and 14,559 +/- 802 infectious viral particles/cell, respectively). T-175 flasks and HYPERFlasks produced up to 2.1 x 10(9) +/- 0.2 and 1.75 x 10(9) +/- 0.08 infectious particles of ONCOS-401 per cm(2) of surface area, respectively. Our findings suggest a suitable stepwise process that can be applied to optimizing the initial production of other oncolytic viruses.