Browsing by Subject "CELL-CYCLE"

Sort by: Order: Results:

Now showing items 1-9 of 9
  • Tguiko, Olga; Jatsenko, Tatjana; Grace, Lalit Kumar Parameswaran; Kurg, Ants; Vermeesch, Joris Robert; Lanner, Fredrik; Altmae, Signe; Salumets, Andres (2019)
    The journey of embryonic development starts at oocyte fertilization, which triggers a complex cascade of events and cellular pathways that guide early embryogenesis. Recent technological advances have greatly expanded our knowledge of cleavage-stage embryo development, which is characterized by an increased rate of whole-chromosome losses and gains, mixoploidy, and atypical cleavage morphokinetics. Embryonic aneuploidy significantly contributes to implantation failure, spontaneous miscarriage, stillbirth or congenital birth defects in both natural and assisted human reproduction. Essentially, early embryo development is strongly determined by maternal factors. Owing to considerable limitations associated with human oocyte and embryo research, the use of animal models is inevitable. However, cellular and molecular mechanisms driving the error-prone early stages of development are still poorly described. In this review, we describe known events that lead to aneuploidy in mammalian oocytes and preimplantation embryos. As the processes of oocyte and embryo development are rigorously regulated by multiple signal-transduction pathways, we explore the putative role of signaling pathways in genomic integrity maintenance. Based on the existing evidence from human and animal data, we investigate whether critical early developmental pathways, like Wnt, Hippo and MAPK, together with distinct DNA damage response and DNA repair pathways can be associated with embryo genomic instability, a question that has, so far, remained largely unexplored.
  • Costa de Oliveira, Regiane; Soares Pontes, Gemilson; Kostyuk, Aleksandr; Coutinho Camargo, Gabriel B.; Dhyani, Anamika; Shvydenko, Tetiana; Shvydenko, Kostiantyn; Grafov, Andriy (2020)
    Cancer still remains a major public health concern around the world and the search for new potential antitumor molecules is essential for fighting the disease. This study evaluated the anticancer and immunomodulatory potential of the newly synthetized ellipticine derivate: sodium bromo-5,11-dimethyl-6H-pyrido[4,3-b]carbazole-7-sulfonate (Br-Ell-SO3Na). It was prepared by the chlorosulfonation of 9-bromoellipticine. The ellipticine-7-sulfonic acid itself is not soluble, but its saponification with sodium hydroxide afforded a water-soluble sodium salt. The cytotoxicity of Br-Ell-SO3Na was tested against cancerous (K562 cell line) and non-cancerous cells (Vero cell line and human peripheral blood mononuclear cells (PBMC)) using a Methylthiazoletetrazolium (MTT) assay. Cell cycle arrest was assessed by flow cytometry and the immunomodulatory activity was analyzed through an enzyme-linked immunosorbent assay (ELISA)(.) The results showed that the Br-Ell-SO3Na molecule has specific anticancer activity (IC50 = 35 mu M) against the K562 cell line, once no cytotoxicity effect was verified against non-cancerous cells. Cell cycle analysis demonstrated that K562 cells treated with Br-Ell-SO3Na were arrested in the phase S. Moreover, the production of IL-6 increased and the expression of IL-8 was inhibited in the human PBMC treated with Br-Ell-SO3Na. The results demonstrated that Br-Ell-SO3Na is a promising anticancer molecule attested by its noteworthy activity against the K562 tumor cell line and immunomodulatory activity in human PBMC cells.
  • Almahmoudi, Rabeia; Salem, Abdelhakim; Murshid, Sakhr; Dourado, Mauricio Rocha; Apu, Ehsanul Hoque; Salo, Tuula; Al-Samadi, Ahmed (2019)
    We recently showed that extracellular interleukin-17F (IL-17F) correlates with better disease-specific survival in oral tongue squamous cell carcinoma (OTSCC) patients. However, the underlying mechanisms of such effect remain obscure. Here, we used qRT-PCR to assess the expression of IL-17F and its receptors (IL-17RA and IL-17RC) in two OTSCC cell lines (HSC-3 and SCC-25) and in normal human oral keratinocytes (HOKs). IL-17F effects on cancer cell proliferation, migration, and invasion were studied using a live-imaging IncuCyte system, and a Caspase-3/7 reagent was used for testing apoptosis. 3D tumor spheroids were utilized to assess the impact of IL-17F on invasion with or without cancer-associated fibroblasts (CAFs). Tube-formation assays were used to examine the effects of IL-17F on angiogenesis using human umbilical vein endothelial cells (HUVEC). OTSCC cells express low levels of IL-17F, IL-17RA, and IL-17RC mRNA compared with HOKs. IL-17F inhibited cell proliferation and random migration of highly invasive HSC-3 cells. CAFs promoted OTSCC invasion in tumor spheroids, whereas IL-17F eliminated such effect. IL-17F suppressed HUVEC tube formation in a dose-dependent manner. Collectively, we suggest that IL-17F counteracts the pro-tumorigenic activity in OTSCC. Due to its downregulation in tumor cells and inhibitory activity in in vitro cancer models, targeting IL-17F or its regulatory pathways could lead to promising immunotherapeutic strategies against OTSCC.
  • Pussila, Marjaana; Toronen, Petri; Einarsdottir, Elisabet; Katayama, Shintaro; Krjutskov, Kaarel; Holm, Liisa; Kere, Juha; Peltomäki, Paivi; Mäkinen, Markus J.; Linden, Jere; Nyström, Minna (2018)
    Colorectal cancer (CRC) genome is unstable and different types of instabilities, such as chromosomal instability (CIN) and microsatellite instability (MSI) are thought to reflect distinct cancer initiating mechanisms. Although 85% of sporadic CRC reveal CIN, 15% reveal mismatch repair (MMR) malfunction and MSI, the hallmarks of Lynch syndrome with inherited heterozygous germline mutations in MMR genes. Our study was designed to comprehensively follow genome-wide expression changes and their implications during colon tumorigenesis. We conducted a long-term feeding experiment in the mouse to address expression changes arising in histologically normal colonic mucosa as putative cancer preceding events, and the effect of inherited predisposition (Mlh1(+/-)) and Western-style diet (WD) on those. During the 21-month experiment, carcinomas developed mainly in WD-fed mice and were evenly distributed between genotypes. Unexpectedly, the heterozygote (B6.129-Mlh1tm1Rak) mice did not show MSI in their CRCs. Instead, both wildtype and heterozygote CRC mice showed a distinct mRNA expression profile and shortage of several chromosomal segregation gene-specific transcripts (Mlh1, Bub1, Mis18a, Tpx2, Rad9a, Pms2, Cenpe, Ncapd3, Odf2 and Dclre1b) in their colon mucosa, as well as an increased mitotic activity and abundant numbers of unbalanced/atypical mitoses in tumours. Our genome-wide expression profiling experiment demonstrates that cancer preceding changes are already seen in histologically normal colon mucosa and that decreased expressions of Mlh1 and other chromosomal segregation genes may form a field-defect in mucosa, which trigger MMR-proficient, chromosomally unstable CRC.
  • Aly, Ashraf A.; Bräse, Stefan; Hassan, Alaa A.; Mohamed, Nasr K.; Abd El-Haleem, Lamiaa E.; Nieger, Martin; Morsy, Nesrin M.; Abdelhafez, Elshimaa M. N. (2020)
    A new series of methyl 2-(2-(4 '-[2.2]paracyclophanyl)-hydrazinylidene)-3-substituted-4-oxothiazolidin-5-ylidene)acetates3a-fwere synthesized from the reaction of paracyclophanyl-acylthiosemicarbazides2a-fwith dimethyl acetylenedicarboxylate. Based upon nuclear magnetic resonance (NMR), infrared (IR), and mass spectra (HRMS), the structure of the obtained products was elucidated. X-ray structure analysis was also used as unambiguous tool to elucidate the structure of the products. The target compounds3a-fwere screened against 60 cancer cell lines. They displayed anticancer activity against a leukemia subpanel, namely, RPMI-8226 and SR cell lines. The activity of compound3awas found as the most cytotoxic potency against 60 cancer cell lines. Consequently, it was selected for further five doses analysis according to National Cancer Institute (NCI) protocol. The cytotoxic effect showed selectivity ratios ranging between 0.63 and 1.28 and between 0.58 and 5.89 at the GI(50)and total growth inhibition (TGI) levels, respectively. Accordingly, compound3aunderwent further mechanistic study against the most sensitive leukemia RPMI-8226 and SR cell lines. It showed antiproliferation with IC50 = 1.61 +/- 0.04 and 1.11 +/- 0.03 mu M against RPMI-8226 and SR cell lines, respectively. It also revealed a remarkable tubulin inhibitory activity, compared to colchicine with IC50 = 4.97 mu M/mL. Caspase-3, BAX, and Bcl-2 assays for3ausing annexin V-FITC staining revealed significant pro-apoptotic activity. Furthermore, multidrug-resistant leukemia SR cells were used to show better resistance indices (1.285 ng/mL, 1.15-fold) than the reference. Docking studies with beta-tubulin indicate that most of the tested compounds illustrated good binding at the colchicine binding site of the enzyme, especially for compound3a, which made several interactions better than that of the reference colchicine.
  • Kallio, Aleksi; Vuokko, Niko; Ojala, Markus; Haiminen, Niina; Mannila, Heikki (2011)
  • Gabriel, Elke; Ramani, Anand; Karow, Ulrike; Gottardo, Marco; Natarajan, Karthick; Gooi, Li Ming; Goranci-Buzhala, Gladiola; Krut, Oleg; Peters, Franziska; Nikolic, Milos; Kuivanen, Suvi; Hasu, Essi; Smura, Teemu; Vapalahti, Olli; Papantonis, Argyris; Schmidt-Chanasit, Jonas; Riparbelli, Maria; Callaini, Giuliano; Kroenke, Martin; Utermoehlen, Olaf; Gopalakrishnan, Jay (2017)
    The recent Zika virus (ZIKV) epidemic is associated with microcephaly in newborns. Although the connection between ZIKV and neurodevelopmental defects is widely recognized, the underlying mechanisms are poorly understood. Here we show that two recently isolated strains of ZIKV, an American strain from an infected fetal brain (FB-GWUH-2016) and a closely-related Asian strain (H/PF/2013), productively infect human iPSC-derived brain organoids. Both of these strains readily target to and replicate in proliferating ventricular zone (VZ) apical progenitors. The main phenotypic effect was premature differentiation of neural progenitors associated with centrosome perturbation, even during early stages of infection, leading to progenitor depletion, disruption of the VZ, impaired neurogenesis, and cortical thinning. The infection pattern and cellular outcome differ from those seen with the extensively passaged ZIKV strain MR766. The structural changes we see after infection with these more recently isolated viral strains closely resemble those seen in ZIKV-associated microcephaly.
  • Bolck, Hella A.; Przetocka, Sara; Meier, Roger; von Aesch, Christine; Zurfluh, Christina; Haenggi, Kay; Spegg, Vincent; Altmeyer, Matthias; Stebler, Michael; Norrelykke, Simon F.; Horvath, Peter; Sartori, Alessandro A.; Porro, Antonio (2022)
    Human CtIP is best known for its role in DNA end resection to initiate DNA double-strand break repair by homologous recombination. Recently, CtIP has also been shown to protect reversed replication forks from nucleolytic degradation upon DNA replication stress. However, still little is known about the DNA damage response (DDR) networks that preserve genome integrity and sustain cell survival in the context of CtIP insufficiency. Here, to reveal such potential buffering relationships, we screened a DDR siRNA library in CtIP-deficient cells to identify candidate genes that induce synthetic sickness/lethality (SSL). Our analyses unveil a negative genetic interaction between CtIP and BARD1, the heterodimeric binding partner of BRCA1. We found that simultaneous disruption of CtIP and BARD1 triggers enhanced apoptosis due to persistent replication stress-induced DNA lesions giving rise to chromosomal abnormalities. Moreover, we observed that the genetic interaction between CtIP and BARD1 occurs independently of the BRCA1-BARD1 complex formation and might be, therefore, therapeutical relevant for the treatment of BRCA-defective tumors.
  • Marttinen, Eeva M.; Lehtonen, Mikko T.; van Gessel, Nico; Reski, Ralf; Valkonen, Jari P.T. (2022)
    Plant viruses are important pathogens able to overcome plant defense mechanisms using their viral suppressors of RNA silencing (VSR). Small RNA pathways of bryophytes and vascular plants have significant similarities, but little is known about how viruses interact with mosses. This study elucidated the responses of Physcomitrella patens to two different VSRs. We transformed P. patens plants to express VSR P19 from tomato bushy stunt virus and VSR 2b from cucumber mosaic virus, respectively. RNA sequencing and quantitative PCR were used to detect the effects of VSRs on gene expression. Small RNA (sRNA) sequencing was used to estimate the influences of VSRs on the sRNA pool of P. patens. Expression of either VSR-encoding gene caused developmental disorders in P. patens. The transcripts of four different transcription factors (AP2/erf, EREB-11 and two MYBs) accumulated in the P19 lines. sRNA sequencing revealed that VSR P19 significantly changed the microRNA pool in P. patens. Our results suggest that VSR P19 is functional in P. patens and affects the abundance of specific microRNAs interfering with gene expression. The results open new opportunities for using Physcomitrella as an alternative system to study plant-virus interactions.