Browsing by Subject "CELL-PROLIFERATION"

Sort by: Order: Results:

Now showing items 1-17 of 17
  • Huber, Rene; Kirsten, Holger; Näkki, Annu; Pohlers, Dirk; Thude, Hansjoerg; Eidner, Thorsten; Heinig, Matthias; Brand, Korbinian; Ahnert, Peter; Kinne, Raimund W. (2019)
    Our aim was to analyse (i) the presence of single nucleotide polymorphisms (SNPs) in the JUN and FOS core promoters in patients with rheumatoid arthritis (RA), knee-osteoarthritis (OA), and normal controls (NC); (ii) their functional influence on JUN/FOS transcription levels; and (iii) their associations with the occurrence of RA or knee-OA. JUN and FOS promoter SNPs were identified in an initial screening population using the Non-Isotopic RNase Cleavage Assay (NIRCA); their functional influence was analysed using reporter gene assays. Genotyping was done in RA (n = 298), knee-OA (n = 277), and NC (n = 484) samples. For replication, significant associations were validated in a Finnish cohort (OA: n = 72, NC: n = 548). Initially, two SNPs were detected in the JUN promoter and two additional SNPs in the FOS promoter in perfect linkage disequilibrium (LD). JUN promoter SNP rs4647009 caused significant downregulation of reporter gene expression, whereas reporter gene expression was significantly upregulated in the presence of the FOS promoter SNPs. The homozygous genotype of FOS promoter SNPs showed an association with the susceptibility for knee-OA (odds ratio (OR) 2.12, 95% confidence interval (CI) 1.2-3.7, p = 0.0086). This association was successfully replicated in the Finnish Health 2000 study cohort (allelic OR 1.72, 95% CI 1.2-2.5, p = 0.006). FOS Promoter variants may represent relevant susceptibility markers for knee-OA.
  • Asghar, Muhammad Yasir; Lassila, Taru; Törnquist, Kid (2021)
    Calcium signaling participates in a vast number of cellular processes, ranging from the regulation of muscle contraction, cell proliferation, and mitochondrial function, to the regulation of the membrane potential in cells. The actions of calcium signaling are, thus, of great physiological significance for the normal functioning of our cells. However, many of the processes that are regulated by calcium, including cell movement and proliferation, are important in the progression of cancer. In the normal thyroid, calcium signaling plays an important role, and evidence is also being gathered showing that calcium signaling participates in the progression of thyroid cancer. This review will summarize what we know in regard to calcium signaling in the normal thyroid as, well as in thyroid cancer.
  • Alyodawi, Khalid; Vermeij, Wilbert P.; Omairi, Saleh; Kretz, Oliver; Hopkinson, Mark; Solagna, Francesca; Joch, Barbara; Brandt, Renata M. C.; Barnhoorn, Sander; van Vliet, Nicole; Ridwan, Yanto; Essers, Jeroen; Mitchell, Robert; Morash, Taryn; Pasternack, Arja; Ritvos, Olli; Matsakas, Antonios; Collins-Hooper, Henry; Huber, Tobias B.; Hoeijmakers, Jan H. J.; Patel, Ketan (2019)
    Background One of the principles underpinning our understanding of ageing is that DNA damage induces a stress response that shifts cellular resources from growth towards maintenance. A contrasting and seemingly irreconcilable view is that prompting growth of, for example, skeletal muscle confers systemic benefit. Methods To investigate the robustness of these axioms, we induced muscle growth in a murine progeroid model through the use of activin receptor IIB ligand trap that dampens myostatin/activin signalling. Progeric mice were then investigated for neurological and muscle function as well as cellular profiling of the muscle, kidney, liver, and bone. Results We show that muscle of Ercc1(Delta/-) progeroid mice undergoes severe wasting (decreases in hind limb muscle mass of 40-60% compared with normal mass), which is largely protected by attenuating myostatin/activin signalling using soluble activin receptor type IIB (sActRIIB) (increase of 30-62% compared with untreated progeric). sActRIIB-treated progeroid mice maintained muscle activity (distance travel per hour: 5.6 m in untreated mice vs. 13.7 m in treated) and increased specific force (19.3 mN/mg in untreated vs. 24.0 mN/mg in treated). sActRIIb treatment of progeroid mice also improved satellite cell function especially their ability to proliferate on their native substrate (2.5 cells per fibre in untreated progeroids vs. 5.4 in sActRIIB-treated progeroids after 72 h in culture). Besides direct protective effects on muscle, we show systemic improvements to other organs including the structure and function of the kidneys; there was a major decrease in the protein content in urine (albumin/creatinine of 4.9 sActRIIB treated vs. 15.7 in untreated), which is likely to be a result in the normalization of podocyte foot processes, which constitute the filtration apparatus (glomerular basement membrane thickness reduced from 224 to 177 nm following sActRIIB treatment). Treatment of the progeric mice with the activin ligand trap protected against the development of liver abnormalities including polyploidy (18.3% untreated vs. 8.1% treated) and osteoporosis (trabecular bone volume; 0.30 mm(3) in treated progeroid mice vs. 0.14 mm(3) in untreated mice, cortical bone volume; 0.30 mm(3) in treated progeroid mice vs. 0.22 mm(3) in untreated mice). The onset of neurological abnormalities was delayed (by similar to 5 weeks) and their severity reduced, overall sustaining health without affecting lifespan. Conclusions This study questions the notion that tissue growth and maintaining tissue function during ageing are incompatible mechanisms. It highlights the need for future investigations to assess the potential of therapies based on myostatin/activin blockade to compress morbidity and promote healthy ageing.
  • Hasygar, Kiran; Deniz, Onur; Liu, Ying; Gullmets, Josef; Hynynen, Riikka; Ruhanen, Hanna; Kokki, Krista; Kakela, Reijo; Hietakangas, Ville (2021)
    Energy storage and growth are coordinated in response to nutrient status of animals. How nutrient-regulated signaling pathways control these processes in vivo remains insufficiently understood. Here, we establish an atypical MAP kinase, ERK7, as an inhibitor of adiposity and growth in Drosophila. ERK7 mutant larvae display elevated triacylglycerol (TAG) stores and accelerated growth rate, while overexpressed ERK7 is sufficient to inhibit lipid storage and growth. ERK7 expression is elevated upon fasting and ERK7 mutant larvae display impaired survival during nutrient deprivation. ERK7 acts in the fat body, the insect counterpart of liver and adipose tissue, where it controls the subcellular localization of chromatin-binding protein PWP1, a growth-promoting downstream effector of mTOR. PWP1 maintains the expression of sugarbabe, encoding a lipogenic Gli-similar family transcription factor. Both PWP1 and Sugarbabe are necessary for the increased growth and adiposity phenotypes of ERK7 loss-of-function animals. In conclusion, ERK7 is an anti-anabolic kinase that inhibits lipid storage and growth while promoting survival on fasting conditions.
  • Falke, J.; Parkkinen, J.; Vaahtera, L.; Hulsbergen-van de Kaa, C. A.; Oosterwijk, E.; Witjes, J. A. (2018)
    Objective. To evaluate the antitumor effect of cyclodextrin-curcumin complex (CDC) on human and rat urothelial carcinoma cells in vitro and to evaluate the effect of intravesical instillations of CDC, BCG, and the combination in vivo in the AY-F344 orthotopic bladder cancer rat model. Curcumin has anticarcinogenic activity on urothelial carcinoma and is therefore under investigation for the treatment of non-muscle invasive bladder cancer. Curcumin and BCG share immunomodulating pathways against urothelial carcinoma. Methods. Curcumin was complexed with cyclodextrin to improve solubility. Four human urothelial carcinoma cell lines and the AY-27 rat cell line were exposed to various concentrations of CDC in vitro. For the in vivo experiment, the AY-27 orthotopic bladder cancer F344 rat model was used. Rats were treated with consecutive intravesical instillations of CDC, BCG, the combination of CDC+BCG, or NaCl as control. Results. CDC showed a dose-dependent antiproliferative effect on all human urothelial carcinoma cell lines tested and the rat AY-27 urothelial carcinoma cell line. Moreover, intravesical treatment with CDC and CDC+BCG results in a lower percentage of tumors (60% and 68%, respectively) compared to BCG (75%) or control (85%). This difference with placebo was not statistically significant (p=0.078 and 0.199, respectively). However, tumors present in the placebo and BCG-treated rats were generally of higher stage. Conclusions. Cyclodextrin-curcumin complex showed an antiproliferative effect on human and rat urothelial carcinoma cell lines in vitro. In the aggressive orthotopic bladder cancer rat model, we observed a promising effect of CDC treatment and CDC in combination with BCG.
  • Saurus, Pauliina; Kuusela, Sara; Dumont, Vincent; Lehtonen, Eero; Fogarty, Christopher L.; Lassenius, Mariann I.; Forsblom, Carol; Lehto, Markku; Saleem, Moin A.; Groop, Per-Henrik; Lehtonen, Sanna (2016)
    Loss of podocytes is an early feature of diabetic nephropathy (DN) and predicts its progression. We found that treatment of podocytes with sera from normoalbuminuric type 1 diabetes patients with high lipopolysaccharide (LPS) activity, known to predict progression of DN, downregulated CDK2 (cyclin-dependent kinase 2). LPS-treatment of mice also reduced CDK2 expression. LPS-induced downregulation of CDK2 was prevented in vitro and in vivo by inhibiting the Toll-like receptor (TLR) pathway using immunomodulatory agent GIT27. We also observed that CDK2 is downregulated in the glomeruli of obese Zucker rats before the onset of proteinuria. Knockdown of CDK2, or inhibiting its activity with roscovitine in podocytes increased apoptosis. CDK2 knockdown also reduced expression of PDK1, an activator of the cell survival kinase Akt, and reduced Akt phosphorylation. This suggests that CDK2 regulates the activity of the cell survival pathway via PDK1. Furthermore, PDK1 knockdown reduced the expression of CDK2 suggesting a regulatory loop between CDK2 and PDK1. Collectively, our data show that CDK2 protects podocytes from apoptosis and that reduced expression of CDK2 associates with the development of DN. Preventing downregulation of CDK2 by blocking the TLR pathway with GIT27 may provide a means to prevent podocyte apoptosis and progression of DN.
  • Li, Hao; Jakobson, Madis; Ola, Roxana; Gui, Yujuan; Kumar, Anmol; Sipilä, Petra; Sariola, Hannu; Kuure, Satu; Andressoo, Jaan-Olle (2019)
    Mechanisms controlling ureter lenght and the position of the kidney are poorly understood. Glial cellline derived neurotrophic factor (GDNF) induced RET signaling is critical for ureteric bud outgrowth, but the function of endogenous GDNF in further renal differentiation and urogenital system development remains discursive. Here we analyzed mice where 3' untranslated region (UTR) of GDNF is replaced with sequence less responsive to microRNA-mediated regulation, leading to increased GDNF expression specifically in cells naturally transcribing Gdnf. We demonstrate that increased Gdnf leads to short ureters in kidneys located in an abnormally caudal position thus resembling human pelvic kidneys. High GDNF levels expand collecting ductal progenitors at the expense of ureteric trunk elongation and result in expanded tip and short trunk phenotype due to changes in cell cycle length and progenitor motility. MEK-inhibition rescues these defects suggesting that MAPK-activity mediates GDNF's effects on progenitors. Moreover, Gdnf(hyper) mice are infertile likely due to effects of excess GDNF on distal ureter remodeling. Our findings suggest that dysregulation of GDNF levels, for example via alterations in 3' UTR, may account for a subset of congenital anomalies of the kidney and urinary tract (CAKUT) and/or congenital infertility cases in humans and pave way to future studies.
  • O'Keefe, Stephen J. D.; Li, Jia V.; Lahti, Leo; Ou, Junhai; Carbonero, Franck; Mohammed, Khaled; Posma, Joram M.; Kinross, James; Wahl, Elaine; Ruder, Elizabeth; Vipperla, Kishore; Naidoo, Vasudevan; Mtshali, Lungile; Tims, Sebastian; Puylaert, Philippe G. B.; DeLany, James; Krasinskas, Alyssa; Benefiel, Ann C.; Kaseb, Hatem O.; Newton, Keith; Nicholson, Jeremy K.; de Vos, Willem M.; Gaskins, H. Rex; Zoetendal, Erwin G. (2015)
    Rates of colon cancer are much higher in African Americans (65: 100,000) than in rural South Africans (
  • Pessa, Heli K. J.; Greco, Dario; Kvist, Jouni; Wahlström, Gudrun Margareta; Heino, Tapio I.; Auvinen, Petri; Frilander, Mikko J. (2010)
    Background The U12-type spliceosome is responsible for the removal of a subset of introns from eukaryotic mRNAs. U12-type introns are spliced less efficiently than normal U2-type introns, which suggests a rate-limiting role in gene expression. The Drosophila genome contains about 20 U12-type introns, many of them in essential genes, and the U12-type spliceosome has previously been shown to be essential in the fly Methodology/Principal Findings We have used a Drosophila line with a P-element insertion in U6atac snRNA, an essential component of the U12-type spliceosome, to investigate the impact of U12-type introns on gene expression at the organismal level during fly development. This line exhibits progressive accumulation of unspliced U12-type introns during larval development and the death of larvae at the third instar stage. Surprisingly, microarray and RT-PCR analyses revealed that most genes containing U12-type introns showed only mild perturbations in the splicing of U12-type introns. In contrast, we detected widespread downstream effects on genes that do not contain U12-type introns, with genes related to various metabolic pathways constituting the largest group. Conclusions/Significance U12-type intron-containing genes exhibited variable gene-specific responses to the splicing defect, with some genes showing up- or downregulation, while most did not change significantly. The observed residual U12-type splicing activity could be explained with the mutant U6atac allele having a low level of catalytic activity. Detailed analysis of all genes suggested that a defect in the splicing of the U12-type intron of the mitochondrial prohibitin gene may be the primary cause of the various downstream effects detected in the microarray analysis.
  • Ahonen, Maria A.; Asghar, Muhammad Yasir; Parviainen, Suvi J.; Liebisch, Gerhard; Höring, Marcus; Leidenius, Marjut; Fischer-Posovszky, Pamela; Wabitsch, Martin; Mikkola, Tomi S.; Törnquist, Kid; Savolainen-Peltonen, Hanna; Haridas, P. A. Nidhina; Olkkonen, Vesa M. (2021)
    MicroRNA-221-3p (miR-221-3p) is associated with both metabolic diseases and cancers. However, its role in terminal adipocyte differentiation and lipid metabolism are uncharacterized. miR-221-3p or its inhibitor was transfected into differentiating or mature human adipocytes. Triglyceride (TG) content and adipogenic gene expression were monitored, global lipidome analysis was carried out, and mechanisms underlying the effects of miR-221-3p were investigated. Finally, cross-talk between miR-221-3p expressing adipocytes and MCF-7 breast carcinoma (BC) cells was studied, and miR-221-3p expression in tumor-proximal adipose biopsies from BC patients analyzed. miR-221-3p overexpression inhibited terminal differentiation of adipocytes, as judged from reduced TG storage and gene expression of the adipogenic markers SCDI , GLUT4, FAS, DGATI /2, AP2, ATGL and AdipoQ, whereas the miR-221-3p inhibitor increased TG storage. Knockdown of the predicted miR-221-3p target, 14-3-3 gamma, had similar antiadipogenic effects as miR-221-3p overexpression, indicating it as a potential mediator of mir-221-3p function. Importantly, miR-221-3p overexpression inhibited de novo lipogenesis but increased the concentrations of ceramides and sphingomyelins, while reducing diacylglycerols, concomitant with suppression of sphingomyelin phosphodiesterase, ATP citrate lyase, and acid ceramidase. miR-221-3p expression was elevated in tumor proximal adipose tissue from patients with invasive BC. Conditioned medium of miR-221-3p overexpressing adipocytes stimulated the invasion and proliferation of BC cells, while medium of the BC cells enhanced miR-221-3p expression in adipocytes. Elevated miR-221-3p impairs adipocyte lipid storage and differentiation, and modifies their ceramide, sphingomyelin, and diacylglycerol content. These alterations are relevant for metabolic diseases but may also affect cancer progression.
  • Rizzello, Carlo Giuseppe; Hernandez-Ledesma, Blanca; Fernandez-Tome, Samuel; Curiel, Jose Antonio; Pinto, Daniela; Marzani, Barbara; Coda, Rossana; Gobbetti, Marco (2015)
    Background: There is an increasing interest toward the use of legumes in food industry, mainly due to the quality of their protein fraction. Many legumes are cultivated and consumed around the world, but few data is available regarding the chemical or technological characteristics, and especially on their suitability to be fermented. Nevertheless, sourdough fermentation with selected lactic acid bacteria has been recognized as the most efficient tool to improve some nutritional and functional properties. This study investigated the presence of lunasin-like polypeptides in nineteen traditional Italian legumes, exploiting the potential of the fermentation with selected lactic acid bacteria to increase the native concentration. An integrated approach based on chemical, immunological and ex vivo (human adenocarcinoma Caco-2 cell cultures) analyses was used to show the physiological potential of the lunasin-like polypeptides. Results: Italian legume varieties, belonging to Phaseulus vulgaris, Cicer arietinum, Lathyrus sativus, Lens culinaris and Pisum sativum species, were milled and flours were chemically characterized and subjected to sourdough fermentation with selected Lactobacillus plantarum C48 and Lactobacillus brevis AM7, expressing different peptidase activities. Extracts from legume doughs (unfermented) and sourdoughs were subjected to western blot analysis, using an anti-lunasin primary antibody. Despite the absence of lunasin, different immunoreactive polypeptide bands were found. The number and the intensity of lunasin-like polypeptides increased during sourdough fermentation, as the consequence of the proteolysis of the native proteins carried out by the selected lactic acid bacteria. A marked inhibitory effect on the proliferation of human adenocarcinoma Caco-2 cells was observed using extracts from legume sourdoughs. In particular, sourdoughs from Fagiolo di Lamon, Cece dell'Alta Valle di Misa, and Pisello riccio di Sannicola flours were the most active, showing a decrease of Caco-2 cells viability up to 70 %. The over-expression of Caco-2 filaggrin and involucrin genes was also induced. Nine lunasin-like polypeptides, having similarity to lunasin, were identified. Conclusions: The features of the sourdough fermented legume flours suggested the use for the manufacture of novel functional foods and/or pharmaceuticals preparations.
  • Bogner, Eva-Maria; Daly, Adrian F.; Gulde, Sebastian; Karhu, Auli; Irmler, Martin; Beckers, Johannes; Mohr, Hermine; Beckers, Albert; Pellegata, Natalia S. (2020)
    Pituitary adenomas (PAs) are intracranial tumors associated with significant morbidity due to hormonal dysregulation, mass effects and have a heavy treatment burden. Growth hormone (GH)-secreting PAs (somatotropinomas) cause acromegaly-gigantism. Genetic forms of somatotropinomas due to germlineAIPmutations (AIPmut+) have an early onset and are aggressive and resistant to treatment with somatostatin analogs (SSAs), including octreotide. The molecular underpinnings of these clinical features remain unclear. We investigated the role of miRNA dysregulation inAIPmut+ vsAIPmut- PA samples by array analysis. miR-34a and miR-145 were highly expressed inAIPmut+ vsAIPmut- somatotropinomas. Ectopic expression ofAIPmut (p.R271W) inAip(-/-)mouse embryonic fibroblasts (MEFs) upregulated miR-34a and miR-145, establishing a causal link betweenAIPmut and miRNA expression. In PA cells (GH3), miR-34a overexpression promoted proliferation, clonogenicity, migration and suppressed apoptosis, whereas miR-145 moderately affected proliferation and apoptosis. Moreover, high miR-34a expression increased intracellular cAMP, a critical mitogenic factor in PAs. Crucially, high miR-34a expression significantly blunted octreotide-mediated GH inhibition and antiproliferative effects. miR-34a directly targetsGnai2encoding G alpha i2, a G protein subunit inhibiting cAMP production. Accordingly, G alpha i2 levels were significantly lower inAIPmut+ vsAIPmut- PA. Taken together, somatotropinomas withAIPmutations overexpress miR-34a, which in turn downregulates G alpha i2 expression, increases cAMP concentration and ultimately promotes cell growth. Upregulation of miR-34a also impairs the hormonal and antiproliferative response of PA cells to octreotide. Thus, miR-34a is a novel downstream target of mutantAIPthat promotes a cellular phenotype mirroring the aggressive clinical features ofAIPmut+ acromegaly.
  • Heinilä, Lassi Matti Petteri; Fewer, David Peter; Jokela, Jouni Kalevi; Wahlsten, Matti; Ouyang, Xiaodan; Permi, Perttu; Jortikka, Anna; Sivonen, Kaarina (2021)
    Laxaphycins are a family of cyclic lipopeptides with synergistic antifungal and antiproliferative activities. They are produced by multiple cyanobacterial genera and comprise two sets of structurally unrelated 11- and 12-residue macrocyclic lipopeptides. Here, we report the discovery of new antifungal laxaphycins from Nostoc sp. UHCC 0702, which we name heinamides, through antimicrobial bioactivity screening. We characterized the chemical structures of eight heinamide structural variants A1-A3 and B1-B5. These variants contain the rare non-proteinogenic amino acids 3-hydroxy-4-methylproline, 4-hydroxyproline, 3-hydroxy-d-leucine, dehydrobutyrine, 5-hydroxyl beta-amino octanoic acid, and O-carbamoyl-homoserine. We obtained an 8.6-Mb complete genome sequence from Nostoc sp. UHCC 0702 and identified the 93 kb heinamide biosynthetic gene cluster. The structurally distinct heinamides A1-A3 and B1-B5 variants are synthesized using an unusual branching biosynthetic pathway. The heinamide biosynthetic pathway also encodes several enzymes that supply non-proteinogenic amino acids to the heinamide synthetase. Through heterologous expression, we showed that (2S,4R)-4-hydroxy-l-proline is supplied through the action of a novel enzyme LxaN, which hydroxylates l-proline. 11- and 12-residue heinamides have the characteristic synergistic activity of laxaphycins against Aspergillus flavus FBCC 2467. Structural and genetic information of heinamides may prove useful in future discovery of natural products and drug development.
  • Lanki, Mira; Seppänen, Hanna; Mustonen, Harri; Hagström, Jaana; Haglund, Caj (2019)
    Background The link between inflammation and carcinogenesis is indisputable. In trying to understand key factors at play, cancer research has developed an interest in the toll-like receptors (TLRs), which have shown signs of having prognostic value in various adenocarcinomas. We began investigating the expression of toll-like receptors 1, 3, 5, 7, and 9 to evaluate their prognostic value of patients with pancreatic ductal adenocarcinoma (PDAC). Methods We collected tumor biopsies from 154 stage I-III PDAC patients surgically treated at Helsinki University Hospital between 2002 and 2011, excluding patients undergoing neoadjuvant therapy. We used tissue microarray slides and immunohistochemistry to assess expression of TLRs 1, 3, 5, 7, and 9 in PDAC tissue. Immunopositivity scores and clinicopathological characteristics were subjected to Fisher's exact test or the linear-by-linear association test. For the survival analysis, we applied the Kaplan-Meier method and log-rank test, and the Cox regression proportional hazard model served for univariate and multivariate analyses. Results Strong TLR1 expression was observable in 60 (39%), strong TLR3 in 48 (31%), strong TLR5 in 58 (38%), strong TLR7 in 14 (9%), and strong TLR9 in 22 (14%) patients. The multivariate analysis showed strong TLR1 expression to associate with better survival than moderate, low, or negative expression (HR = 0.68; 95% CI 0.47-0.99; p = 0.044). Additionally, those few patients with tumors negative for TLR1, TLR3, TLR7, or TLR9 fared poorly (HR = 2.41; 95% CI 1.31-4.43; p = 0.005; n = 13). Conclusion Strong TLR1 expression suggested better prognosis in PDAC patients, whereas negative expression of TLR1, TLR3, TLR7, or TLR9 was a sign of poor prognosis.
  • Asghar, Muhammad Yasir; Törnquist, Kid (2020)
    Calcium (Ca2+) is perhaps the most versatile signaling molecule in cells. Ca2+ regulates a large number of key events in cells, ranging from gene transcription, motility, and contraction, to energy production and channel gating. To accomplish all these different functions, a multitude of channels, pumps, and transporters are necessary. A group of channels participating in these processes is the transient receptor potential (TRP) family of cation channels. These channels are divided into 29 subfamilies, and are differentially expressed in man, rodents, worms, and flies. One of these subfamilies is the transient receptor potential canonical (TRPC) family of channels. This ion channel family comprises of seven isoforms, labeled TRPC1-7. In man, six functional forms are expressed (TRPC1, TRPC3-7), whereas TRPC2 is a pseudogene; thus, not functionally expressed. In this review, we will describe the importance of the TRPC channels and their interacting molecular partners in the etiology of cancer, particularly in regard to regulating migration and invasion.
  • Nieminen, Heikki J.; Laidmae, Ivo; Salmi, Ari; Rauhala, Timo; Paulin, Tor; Heinämäki, Jyrki; Haeggström, Edward (2018)
    Electrospinning is commonly used to produce polymeric nanofibers. Potential applications for such fibers include novel drug delivery systems, tissue engineering scaffolds, and filters. Electrospinning, however, has shortcomings such as needle clogging and limited ability to control the fiber-properties in a non-chemical manner. This study reports on an orifice-less technique that employs high-intensity focused ultrasound, i.e. ultrasound-enhanced electrospinning. Ultrasound bursts were used to generate a liquid protrusion with a Taylor cone from the surface of a polymer solution of polyethylene oxide. When the polymer was charged with a high negative voltage, nanofibers jetted off from the tip of the protrusion landed on an electrically grounded target held at a constant distance from the tip. Controlling the ultrasound characteristics permitted physical modification of the nanofiber topography at will without using supplemental chemical intervention. Possible applications of tailor-made fibers generated by ultrasound-enhanced electrospinning include pharmaceutical controlled-release applications and biomedical scaffolds with spatial gradients in fiber thickness and mechanical properties.
  • Niku, Mikael; Pajari, Anne-Maria; Sarantaus, Laura; Päivärinta, Essi; Storvik, Markus; Heiman-Lindh, Anu; Suokas, Santeri; Nyström, Minna; Mutanen, Marja (2017)
    Western-type diet (WD) is a risk factor for colorectal cancer, but the underlying mechanisms are poorly understood. We investigated the interaction of WD and heterozygous mutation in the Apc gene on adenoma formation and metabolic and immunological changes in the histologically normal intestinal mucosa of Apc(Min/+) (Min/ +) mice. The diet used was high in saturated fat and low in calcium, vitamin D, fiber and folate. The number of adenomas was twofold higher in the WD mice compared to controls, but adenoma size, proliferation or apoptosis did not differ. The ratio of the MM to wild-type allele was higher in the WD mice, indicating accelerated loss of Apc heterozygosity (LOH). Densities of intraepithelial CD3 epsilon(+) T lymphocytes and of mucosal FoxP3(+) regulatory T cells were higher in the WD mice, implying inflammatory changes. Western blot analyses from the mucosa of the WD mice showed suppressed activation of the ERK and AKT pathways and a tendency for reduced activation of the mTOR pathway as measured in phosphoS6/S6 levels. The expression of pyruvate dehydrogenase kinase 4 was up-regulated in both mRNA and protein levels. Gene expression analyses showed changes in oxidation/reduction, fatty acid and monosaccharide metabolic pathways, tissue organization, cell fate and regulation of apoptosis. Together, our results suggest that the high-risk Western diet primes the intestine to tumorigenesis through synergistic effects in energy metabolism, inflammation and oxidative stress, which culminate in the acceleration of LOH of the Apc gene. (C) 2016 Elsevier Inc. All rights reserved.