Browsing by Subject "CHAIN LENGTH"

Sort by: Order: Results:

Now showing items 1-2 of 2
  • Itokazu, Yutaka; Tajima, Nobuyoshi; Kerosuo, Laura; Somerharju, Pentti; Sariola, Hannu; Yu, Robert K.; Kakela, Reijo (2016)
    The central nervous system (CNS) harbors multiple glial fibrillary acidic protein (GFAP) expressing cell types. In addition to the most abundant cell type of the CNS, the astrocytes, various stem cells and progenitor cells also contain GFAP+ populations. Here, in order to distinguish between two types of GFAP expressing cells with or without the expression of the A2B5 antigens, we performed lipidomic analyses on A2B5+/GFAP+ and A2B5-/GFAP+ cells from rat spinal cord. First, A2B5+/GFAP- progenitors were exposed to the leukemia inhibitory factor (LIF) or bone morphogenetic protein (BMP) to induce their differentiation to A2B5+/GFAP+ cells or A2B5-/GFAP+ astrocytes, respectively. The cells were then analyzed for changes in their phospholipid, sphingolipid or acyl chain profiles by mass spectrometry and gas chromatography. Compared to A2B5+/GFAP- progenitors, A2B5-/GFAP+ astrocytes contained higher amounts of ether phospholipids (especially the species containing arachidonic acid) and sphingomyelin, which may indicate characteristics of cellular differentiation and inability for multipotency. In comparison, principal component analyses revealed that the lipid composition of A2B5+/GFAP+ cells retained many of the characteristics of A2B5+/GFAP- progenitors, but their lipid profile was different from that of A2B5-/GFAP+ astrocytes. Thus, our study demonstrated that two GFAP+ cell populations have distinct lipid profiles with the A2B5+/GFAP+ cells sharing a phospholipid profile with progenitors rather than astrocytes. The progenitor cells may require regulated low levels of lipids known to mediate signaling functions in differentiated cells, and the precursor lipid profiles may serve as one measure of the differentiation capacity of a cell population.
  • Keva, Ossi; Taipale, Sami J.; Hayden, Brian; Thomas, Stephen M.; Vesterinen, Jussi; Kankaala, Paula; Kahilainen, Kimmo K. (2021)
    Climate change in the Arctic is outpacing the global average and land-use is intensifying due to exploitation of previously inaccessible or unprofitable natural resources. A comprehensive understanding of how the joint effects of changing climate and productivity modify lake food web structure, biomass, trophic pyramid shape and abundance of physiologically essential biomolecules (omega-3 fatty acids) in the biotic community is lacking. We conducted a space-for-time study in 20 subarctic lakes spanning a climatic (+3.2 degrees C and precipitation: +30%) and chemical (dissolved organic carbon: +10 mg/L, total phosphorus: +45 mu g/L and total nitrogen: +1,000 mu g/L) gradient to test how temperature and productivity jointly affect the structure, biomass and community fatty acid content (eicosapentaenoic acid [EPA] and docosahexaenoic acid [DHA]) of whole food webs. Increasing temperature and productivity shifted lake communities towards dominance of warmer, murky-water-adapted taxa, with a general increase in the biomass of primary producers, and secondary and tertiary consumers, while primary invertebrate consumers did not show equally clear trends. This process altered various trophic pyramid structures towards an hour glass shape in the warmest and most productive lakes. Increasing temperature and productivity had negative fatty acid content trends (mg EPA + DHA/g dry weight) in primary producers and primary consumers, but not in secondary nor tertiary fish consumers. The massive biomass increment of fish led to increasing areal fatty acid content (kg EPA + DHA/ha) towards increasingly warmer, more productive lakes, but there were no significant trends in other trophic levels. Increasing temperature and productivity are shifting subarctic lake communities towards systems characterized by increasing dominance of cyanobacteria and cyprinid fish, although decreasing quality in terms of EPA + DHA content was observed only in phytoplankton, zooplankton and profundal benthos.