Sort by: Order: Results:

Now showing items 1-14 of 14
  • Färm, Elina; Heikkilä, Mikko J.; Vehkamäki, Marko; Mizohata, Kenichiro; Ritala, Mikko; Leskelä, Markku; Kemell, Marianna (2017)
    As2S3 thin films were deposited on glass and silicon (100) substrates by atomic layer deposition from tris(dimethylamino) arsine [(CH3)(2)N)(3)As] and H2S. Amorphous films were deposited at an exceptionally low temperature of 50 degrees C. No film growth was observed at higher temperatures. The films were amorphous and contained H and C as the main impurities. The refractive index was 2.3 at 1.0 mu m. The films were sensitive to air humidity, but their stability was significantly improved by a protective Al2O3 layer. (C) 2016 American Vacuum Society.
  • Mattinen, Miika; Hatanpaa, Timo; Sarnet, Tiina; Mizohata, Kenichiro; Meinander, Kristoffer; King, Peter J.; Khriachtchev, Leonid; Räisänen, Jyrki; Ritala, Mikko; Leskelä, Markku (2017)
    Molybdenum disulfide (MoS2) is a semiconducting 2D material, which has evoked wide interest due to its unique properties. However, the lack of controlled and scalable methods for the production of MoS2 films at low temperatures remains a major hindrance on its way to applications. In this work, atomic layer deposition (ALD) is used to deposit crystalline MoS2 thin films at a relatively low temperature of 300 degrees C. A new molybdenum precursor, Mo(thd)(3) (thd = 2,2,6,6-tetramethylheptane-3,5-dionato), is synthesized, characterized, and used for film deposition with H2S as the sulfur precursor. Self-limiting growth with a low growth rate of approximate to 0.025 angstrom cycle(-1), straightforward thickness control, and large-area uniformity are demonstrated. Film crystallinity is found to be relatively good considering the low deposition temperature, but the films have significant surface roughness. Additionally, chemical composition as well as optical and wetting properties are evaluated. MoS2 films are deposited on a variety of substrates, which reveal notable differences in growth rate, surface morphology, and crystallinity. The growth of crystalline MoS2 films at comparably low temperatures by ALD contributes toward the use of MoS2 for applications with a limited thermal budget.
  • Iivonen, Tomi; Heikkilä, Mikko J.; Popov, Georgi; Nieminen, Heta-Elisa; Kaipio, Mikko; Kemell, Marianna; Mattinen, Miika; Meinander, Kristoffer; Mizohata, Kenichiro; Räisänen, Jyrki; Ritala, Mikko; Leskelä, Markku (2019)
    Herein, we report an atomic layer deposition (ALD) process for Cu2O thin films using copper(II) acetate [Cu(OAc)(2)] and water vapor as precursors. This precursor combination enables the deposition of phase-pure, polycrystalline, and impurity-free Cu2O thin films at temperatures of 180-220 degrees C. The deposition of Cu(I) oxide films from a Cu(II) precursor without the use of a reducing agent is explained by the thermally induced reduction of Cu(OAc)(2) to the volatile copper(I) acetate, CuOAc. In addition to the optimization of ALD process parameters and characterization of film properties, we studied the Cu2O films in the fabrication of photoconductor devices. Our proof-of-concept devices show that approx- imately 20 nm thick Cu2O films can be used for photodetection in the visible wavelength range and that the thin film photoconductors exhibit improved device characteristics in comparison to bulk Cu2O crystals.
  • Hämäläinen, Jani; Mattinen, Miika; Mizohata, Kenichiro; Meinander, Kristoffer; Vehkamäki, Marko; Räisänen, Jyrki; Ritala, Mikko; Leskelä, Markku (2018)
    2D materials research is advancing rapidly as various new “beyond graphene” materials are fabricated, their properties studied, and materials tested in various applications. Rhenium disulfide is one of the 2D transition metal dichalcogenides that has recently shown to possess extraordinary properties such as that it is not limited by the strict monolayer thickness requirements. The unique inherent decoupling of monolayers in ReS2 combined with a direct bandgap and highly anisotropic properties makes ReS2 one of the most interesting 2D materials for a plethora of applications. Here, a highly controllable and precise atomic layer deposition (ALD) technique is applied to deposit ReS2 thin films. Film growth is demonstrated on large area (5 cm × 5 cm) substrates at moderate deposition temperatures between 120 and 500 °C, and the films are extensively characterized using field emission scanning electron microscopy/energy‐dispersive X‐ray spectroscopy, X‐ray diffractometry using grazing incidence, atomic force microscopy, focused ion beam/transmission electron microscopy, X‐ray photoelectron spectroscopy, and time‐of‐flight elastic recoil detection analysis techniques. The developed ReS2 ALD process highlights the potential of the material for applications beyond planar structure architectures. The ALD process also offers a route to an upgrade to an industrial scale.
  • Fang, Jiaxi; Wang, Yang; Kangasluoma, Juha; Attoui, Michel; Junninen, Heikki; Kulmala, Markku; Petäjä, Tuukka; Biswas, Pratim (2017)
    Few studies reported the formation of Ti-containing clusters in the initial stages of TiO2 flame synthesis. The conversion from synthesis precursor to TiO2 monomers was commonly assumed to take place through global reaction such as thermal decomposition and/or hydrolysis at high temperatures. More recent studies have been able to identify stable intermediates of Ti-containing monomers, most commonly Ti(OH)(4), as the final step before the formation of TiO2. However, no larger Ti-containing cluster formation mechanisms or interactions between these monomers have been tracked. To investigate cluster formation pathways of TiO2 during flame synthesis, Charged clusters were measured in an atmospheric pressure interface time-of-flight (APi-TOF) mass spectrometer. TiO2 nanoparticles were synthesized by adding titanium tetraisopropoxide (TTIP) precursor to a premixed CH4/O-2/N-2 flat flame aerosol reactor. Pure TiO2 clusters were not detected by the APi-TOF. Results from measured mass spectra and mass defect plots show that for positively charged clusters, the abstraction of CH2 groups occurs simultaneously with the clustering of larger intermediate organometallic species. For negatively charged clusters, NOx formation pathways in the flame may play a role during the initial stages of TiO2 formation, since a lot of Ti-containing clusters were attached with nitrate-related species. These research findings provide insights on quantum dot synthesis and molecular doping where rapid dilution of the flame synthesized nanoparticles is needed to better control the particle size and chemical composition. The possible influences of and potential artifacts brought by the dilution system on observing the incipient particle formation in flames were also discussed.
  • Mattinen, Miika; King, Peter J.; Bruener, Philipp; Leskelä, Markku; Ritala, Mikko (2020)
    Semiconducting 2D materials, such as SnS2, hold great promise in a variety of applications including electronics, optoelectronics, and catalysis. However, their use is hindered by the scarcity of deposition methods offering necessary levels of thickness control and large-area uniformity. Herein, a low-temperature atomic layer deposition (ALD) process is used to synthesize up to 5x5 cm(2)continuous, few-layer SnS(2)films on a variety of substrates, including SiO2/Si, Si-H, different ALD-grown films (Al2O3, TiO2, and Ir), sapphire, and muscovite mica. As a part of comprehensive film characterization, the use of low energy ion scattering (LEIS) is showcased to determine film continuity, coverage of monolayer and multilayer areas, and film thickness. It is found that on sapphire substrate, continuous films are achieved at lower thicknesses compared to the other substrates, down to two monolayers or even less. On muscovite mica, van der Waals epitaxial growth is realized after the post-deposition annealing, or even in the as-deposited films when the growth is performed at 175 to 200 degrees C. This work highlights the importance of the substrate choice for 2D materials and presents a practical low-temperature method for the deposition of high-quality SnS(2)films that may be further evaluated for a range of applications.
  • Kalam, Kristjan; Seemen, Helina; Mikkor, Mats; Ritslaid, Peeter; Stern, Raivo; Duenas, Salvador; Castan, Helena; Tamm, Aile; Kukli, Kaupo (2018)
    Atomic layer deposition method was employed to deposit thin films consisting of ZrO2 and HfO2. Zirconia films were doped with hafnia and vice versa, and also nanolaminates were formed. All depositions were carried out at 300 degrees C. Most films were crystalline in their as-deposited state. Zirconia exhibited the metastable cubic and tetragonal phases by a large majority, whereas hafnia was mostly in its stable monoclinic phase. Magnetic and electrical properties of the films were assessed. Un-doped zirconia was ferromagnetic and this property diminished with increasing the amount of hafnia in a film. All films exhibited ferroelectric-like behavior and the polarization curves also changed with respect to the film composition. (C) The Author(s) 2018. Published by ECS.
  • Heikkilä, Mikko J.; Hämäläinen, Jani; Puukilainen, Esa; Leskelä, Markku; Ritala, Mikko (2020)
    IrO2 is an important material in numerous applications ranging from catalysis to the microelectronics industry, but despite this its behaviour upon annealing under different conditions has not yet been thoroughly studied. This work provides a detailed investigation of the annealing of IrO2 thin films using in situ high-temperature X-ray diffraction and X-ray reflectivity (HTXRR) measurements from room temperature up to 1000 degrees C in oxygen, nitrogen, forming gas and vacuum. Complementary ex situ scanning electron microscopy and atomic force microscopy measurements were conducted. The combined data show the dependencies of crystalline properties and surface morphology on the annealing temperature and atmosphere. The reduction of IrO2 to Ir takes place at a temperature as low as 150 degrees C in forming gas, but in oxygen IrO2 is stable up to 800 degrees C and evaporates as a volatile oxide at higher temperatures. The IrO2 crystallite size remains constant in oxygen up to 400 degrees C and increases above that, while in the more reducing atmospheres the Ir crystallites grow continuously above the phase-change temperature. The role of HTXRR in the analysis is shown to be important since its high sensitivity allows one to observe changes taking place in the film at temperatures much below the phase change.
  • Mattinen, Miika; King, Peter J.; Khriachtchev, Leonid; Meinander, Kristoffer; Gibbon, James T.; Dhanak, Vin R.; Räisänen, Jyrki; Ritala, Mikko; Leskelä, Markku (2018)
    Semiconducting 2D materials, such as SnS2, hold immense potential for many applications ranging from electronics to catalysis. However, deposition of few-layer SnS2 films has remained a great challenge. Herein, continuous wafer-scale 2D SnS2 films with accurately controlled thickness (2 to 10 monolayers) are realized by combining a new atomic layer deposition process with low-temperature (250 degrees C) postdeposition annealing. Uniform coating of large-area and 3D substrates is demonstrated owing to the unique self-limiting growth mechanism of atomic layer deposition. Detailed characterization confirms the 1T-type crystal structure and composition, smoothness, and continuity of the SnS2 films. A two-stage deposition process is also introduced to improve the texture of the films. Successful deposition of continuous, high-quality SnS2 films at low temperatures constitutes a crucial step toward various applications of 2D semiconductors.
  • Mäntymäki, Miia; Ritala, Mikko; Leskelä, Markku (2018)
    Lithium-ion batteries are the enabling technology for a variety of modern day devices, including cell phones, laptops and electric vehicles. To answer the energy and voltage demands of future applications, further materials engineering of the battery components is necessary. To that end, metal fluorides could provide interesting new conversion cathode and solid electrolyte materials for future batteries. To be applicable in thin film batteries, metal fluorides should be deposited with a method providing a high level of control over uniformity and conformality on various substrate materials and geometries. Atomic layer deposition (ALD), a method widely used in microelectronics, offers unrivalled film uniformity and conformality, in conjunction with strict control of film composition. In this review, the basics of lithium-ion batteries are shortly introduced, followed by a discussion of metal fluorides as potential lithium-ion battery materials. The basics of ALD are then covered, followed by a review of some conventional lithium-ion battery materials that have been deposited by ALD. Finally, metal fluoride ALD processes reported in the literature are comprehensively reviewed. It is clear that more research on the ALD of fluorides is needed, especially transition metal fluorides, to expand the number of potential battery materials available.
  • Liu, Jian; Muinos, Henrique Vazquez; Nordlund, Kai; Djurabekova, Flyura (2020)
    As a promising material used in accelerators and in space in the future, it is important to study the property and structural changes of graphene and diamond-like carbon on the surface as a protective layer before and after swift heavy ion irradiation, although this layer could have a loose structure due to the intrinsic sp(2) surrounding environment of graphene during its deposition period. In this study, by utilizing inelastic thermal spike model and molecular dynamics, we simulated swift heavy ion irradiation and examined the track radius in the vertical direction, as well as temperature, density, and sp(3) fraction distribution along the radius from the irradiation center at different time after irradiation. The temperature in the irradiation center can reach over 11000 K at the beginning of irradiation while there would be a low density and sp(3) fraction area left in the central region after 100 ps. Ring analysis also demonstrated a more chaotic cylindrical region in the center after irradiation. After comprehensive consideration, diamond-like carbon deposited by 70 eV carbon bombardment provided the best protection.
  • Ghafourisaleh, Saba; Popov, Georgi; Leskela, Markku; Putkonen, Matti; Ritala, Mikko (2021)
    Because of its high conductivity and intrinsic stability, poly(3,4-ethylenedioxythiophene (PEDOT) has gained great attention both in academic research and industry over the years. In this study, we used the oxidative molecular layer deposition (oMLD) technique to deposit PEDOT from 3,4-ethylenedioxythiophene (EDOT) and a new inorganic oxidizing agent, rhenium pentachloride (ReCl5). We extensively characterized the properties of the films by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDS), Raman, and conductivity measurements. The oMLD of polymers is based on the sequential adsorption of the monomer and its oxidation-induced polymerization. However, oMLD has been scarcely used because of the challenge of finding a suitable combination of volatile, reactive, and stable organic monomers applicable at high temperatures. ReCl5 showed promising properties in oMLD because it has high thermal stability and high oxidizing ability for EDOT. PEDOT films were deposited at temperatures of 125-200 degrees C. EDS and XPS measurements showed that the as-deposited films contained residues of rhenium and chlorine, which could be removed by rinsing the films with deionized water. The polymer films were transparent in the visible region and showed relatively high electrical conductivities within the 2-2000 S cm(-1) range.
  • Seemen, Helina; Rähn, Mihkel; Kalam, Kristjan; Sajavaara, Timo; Duenas, Salvador; Castan, Helena; Link, Joosep; Stern, Raivo; Kukli, Kaupo; Tamm, Aile (2018)
    Five-layer crystalline thin film structures were formed, consisting of ZrO2 and Co3O4 alternately grown on Si(100) substrates by atomic layer deposition at 300 degrees C using ZrCl4 and Co(acac)(3) as the metal precursors and ozone as the oxygen precursor. The performance of the laminate films was dependent on the relative content of constituent oxide layers. The magnetization in these films was nonlinear, saturative, and with very weak coercive fields. Electrical measurements revealed the formation of significant polarization versus external field loops and implied some tendency toward memristive behavior. (C) The Author(s) 2018. Published by ECS.
  • Dinh , Van Tuan; Kotakoski, Jani; Louvet, Thibaud; Ortmann, Frank; Meyer, Jannik C.; Roche, Stephan (2013)