Browsing by Subject "CHILLING REQUIREMENT"

Sort by: Order: Results:

Now showing items 1-3 of 3
  • Samad, Samia; Kurokura, Takeshi; Koskela, Elli; Toivainen, Tuomas; Patel, Vipul; Mouhu, Katriina; Sargent, Daniel James; Hytonen, Timo (2017)
    Flowering time is an important trait that affects survival, reproduction and yield in both wild and cultivated plants. Therefore, many studies have focused on the identification of flowering time quantitative trait locus (QTLs) in different crops, and molecular control of this trait has been extensively investigated in model species. Here we report the mapping of QTLs for flowering time and vegetative traits in a large woodland strawberry mapping population that was phenotyped both under field conditions and in a greenhouse after flower induction in the field. The greenhouse experiment revealed additive QTLs in three linkage groups (LG), two on both LG4 and LG7, and one on LG6 that explain about half of the flowering time variance in the population. Three of the QTLs were newly identified in this study, and one co-localized with the previously characterized FvTFL1 gene. An additional strong QTL corresponding to previously mapped PFRU was detected in both field and greenhouse experiments indicating that gene(s) in this locus can control the timing of flowering in different environments in addition to the duration of flowering and axillary bud differentiation to runners and branch crowns. Several putative flowering time genes were identified in these QTL regions that await functional validation. Our results indicate that a few major QTLs may control flowering time and axillary bud differentiation in strawberries. We suggest that the identification of causal genes in the diploid strawberry may enable fine tuning of flowering time and vegetative growth in the closely related octoploid cultivated strawberry.
  • Lundell, Robin; Hänninen, Heikki; Saarinen, Timo; Åström, Helena; Zhang, Rui (2020)
    Bud dormancy of plants has traditionally been explained either by physiological growth arresting conditions in the bud or by unfavourable environmental conditions, such as non-growth-promoting low air temperatures. This conceptual dichotomy has provided the framework also for developing process-based plant phenology models. Here, we propose a novel model that in addition to covering the classical dichotomy as a special case also allows the quantification of an interaction of physiological and environmental factors. According to this plant-environment interaction suggested conceptually decades ago, rather than being unambiguous, the concept of "non-growth-promoting low air temperature" depends on the dormancy status of the plant. We parameterized the model with experimental results of growth onset for seven boreal plant species and found that based on the strength of the interaction, the species can be classified into three dormancy types, only one of which represents the traditional dichotomy. We also tested the model with four species in an independent experiment. Our study suggests that interaction of environmental and physiological factors may be involved in many such phenomena that have until now been considered simply as plant traits without any considerations of effects of the environmental factors.
  • Hytönen, Timo; Kurokura, Takeshi (2020)
    Strawberry flowering physiology has engaged the interest of researchers for almost a century after the initial reports demonstrating the photoperiodic control of flowering and N egetative reproduction through stolons called runners. Most strawberries possess a seasonal flowering habit with flower initiation occurring under short days in autumn and flowering during the following spring. Also perpetual flowering genotypes are known in diploid woodland strawberry (Fragaria vesca L.) and octoploid garden strawberry (F. x ananassa Duch.), and recent research have shown that this trait has evolved independently in different species. Studies in the perpetual flowering mutant of woodland strawberry led to the identification of TERMINAL FLOWER1 (FvTFL1) as a major floral repressor causing the seasonal flowering habit in this species and demonstrated that recessive mutation in this gene leads to perpetual flowering. This breakthrough opened an avenue for molecular understanding on the control of flowering by different environmental signals. Different loci control perpetual flowering in garden strawberry including one dominant major locus and additional environmentally regulated epistatic loci. The major gene is called Perpetual Flowering Runnering (PFRU) because it also reduces the number of runners. Growth regulator applications initially demonstrated the role of gibberellin in the control of runner formation, and molecular understanding on the role of gibberellin biosynthesis and signaling in this process has started to emerge. Here, we present current understanding and major open questions on the control of flowering and runnering in strawberries. In order to understand the control of flowering in the context of perennial growth cycle, we also discuss current knowledge on the control of dormancy.