Sort by: Order: Results:

Now showing items 1-4 of 4
  • Vaikkinen, Anu; Kauppila, Tiina J.; Kostiainen, Risto (2016)
    The efficiencies of charge exchange reaction in dopant-assisted atmospheric pressure chemical ionization (DA-APCI) and dopant-assisted atmospheric pressure photoionization (DA-APPI) mass spectrometry (MS) were compared by flow injection analysis. Fourteen individual compounds and a commercial mixture of 16 polycyclic aromatic hydrocarbons were chosen as model analytes to cover a wide range of polarities, gas-phase ionization energies, and proton affinities. Chlorobenzene was used as the dopant, and methanol/water (80/20) as the solvent. In both techniques, analytes formed the same ions (radical cations, protonated molecules, and/or fragments). However, in DA-APCI, the relative efficiency of charge exchange versus proton transfer was lower than in DA-APPI. This is suggested to be because in DA-APCI both dopant and solvent clusters can be ionized, and the formed reagent ions can react with the analytes via competing charge exchange and proton transfer reactions. In DA-APPI, on the other hand, the main reagents are dopant-derived radical cations, which favor ionization of analytes via charge exchange. The efficiency of charge exchange in both DA-APPI and DA-APCI was shown to depend heavily on the solvent flow rate, with best efficiency seen at lowest flow rates studied (0.05 and 0.1 mL/min). Both DA-APCI and DA-APPI showed the radical cation of chlorobenzene at 0.05-0.1 mL/min flow rate, but at increasing flow rate, the abundance of chlorobenzene M+. decreased and reagent ion populations deriving from different gas-phase chemistry were recorded. The formation of these reagent ions explains the decreasing ionization efficiency and the differences in charge exchange between the techniques.
  • Feijo Barreira, Luis Miguel; Duporte, Geoffroy; Rönkkö, Tuukka; Parshintsev, Jevgeni; Hartonen, Kari; Schulman, Lydia; Heikkinen, Enna; Jussila, Matti; Kulmala, Markku; Riekkola, Marja-Liisa (2018)
    Biogenic volatile organic compounds (BVOCs) emitted by terrestrial vegetation participate in a diversity of natural processes. These compounds impact both on short-range processes, such as on plant protection and communication, and on high-range processes, by e.g. participation on aerosol particle formation and growth. The biodiversity of plant species around the Earth, the vast assortment of emitted BVOCs, and their trace atmospheric concentrations contribute to the high remaining uncertainties about the effects of these compounds on atmospheric chemistry and physics, and call for the development of novel collection devices that can offer portability with improved selectivity and capacity. In this study, a novel solid-phase microextraction (SPME) Arrow sampling system was used for the static and dynamic collection of BVOCs from the boreal forest, and samples were subsequently analysed on-site by gas chromatography-mass spectrometry (GC-MS). This system offers higher sampling capacity and improved robustness than the traditional equilibrium-based SPME techniques, such as SPME fibers. Field measurements were performed in summer 2017 at the Station for Measuring Ecosystem-Atmosphere Relations (SMEAR II) in Hyytiälä, Finland. Complementary laboratory tests were also performed to compare the SPME-based techniques under controlled experimental conditions and to evaluate the effect of temperature and relative humidity on their extraction performance. The most abundant monoterpenes and aldehydes were successfully collected. A significant improvement on sampling capacity was observed with the new SPME Arrow system when compared to SPME fibers, with collected amounts being approximately 2 times higher for monoterpenes and 7-8 times higher for aldehydes. BVOC species exhibited different affinities for the type of sorbent materials used (PDMS/Carbon WR vs. PDMS/DVB). Higher extraction efficiencies were obtained with dynamic collection prior to equilibrium regime, but this benefit during the field measurements was small probably due to the natural agitation provided by the wind. An increase in temperature and relative humidity caused a decrease in the amounts of analytes extracted under controlled experimental conditions, even though the effect was more significant for PDMS/Carbon WR than for PDMS/DVB. Overall, results demonstrated the benefits and challenges of using SPME Arrow for the sampling of BVOCs in the atmosphere.
  • Lan, Hangzhen; Salmi, Leo D.; Rönkkö, Tuukka; Parshintsev, Jevgeni; Jussila, Matti; Hartonen, Kari; Kemell, Marianna; Riekkola, Marja-Liisa (2018)
    New chemical vapor reaction (CVR) and atomic layer deposition (ALD)-conversion methods were utilized for preparation of metal organic frameworks (MOFs) coatings of solid phase microextraction (SPME) Arrow for the first time. With simple, easy and convenient one-step reaction or conversion, four MOF coatings were made by suspend ALD iron oxide (Fe2O3) film or aluminum oxide (Al2O3) film above terephthalic acid (H2BDC) or trimesic acid (H3BTC) vapor. UIO-66 coating was made by zirconium (Zr)-BDC film in acetic acid vapor. As the first documented instance of all-gas phase synthesis of SPME Arrow coatings, preparation parameters including CVR/conversion time and temperature, acetic acid volume, and metal oxide film/metal-ligand films thickness were investigated. The optimal coatings exhibited crystalline structures, excellent uniformity, satisfactory thickness (2-7.5 μm), and high robustness (>80 times usage). To study the practical usefulness of the coatings for the extraction, several analytes with different chemical properties were tested. The Fe-BDC coating was found to be the most selective and sensitive for the determination of benzene ring contained compounds due to its highly hydrophobic surface and unsaturated metal site. UIO-66 coating was best for small polar, aromatic, and long chain polar compounds owing to its high porosity. The usefulness of new coatings were evaluated for gas chromatography-mass spectrometer (GC-MS) determination of several analytes, present in wastewater samples at three levels of concentration, and satisfactory results were achieved.
  • Lan, Hangzhen; Hartonen, Kari; Riekkola, Marja-Liisa (2020)
    Growing concern about the effects of atmospheric pollutants on climate and human health has accelerated the development of novel analytical methods, including sampling systems, for the determination of atmospheric volatile organic compounds (VOCs). Miniaturised air sampling (MAS) techniques have attracted wide attention in the past two decades due to their advantages (ease of operation, time-integrated sampling, small/no organic solvent consumption, and potential for automation). This review focuses on the latest developments in these techniques, including needle trap microextraction (NTME), in-tube extraction (ITEX), sorption trap, solid-phase microextraction (SPME fibre, SPME Arrow, and retracted SPME fibre), thin-film microextraction (TFME), solid-phase dynamic extraction (SPDE), and stir bar sorptive extraction (SBSE). Further, their benefits, drawbacks, and applicability to air sampling are discussed. The applications of MAS techniques for the analysis of atmospheric air, indoor air, breath air, and emissions of plants and foods are summarised and discussed.