Browsing by Subject "CLASSIFIERS"

Sort by: Order: Results:

Now showing items 1-2 of 2
  • Huong Thi Thanh Nguyen; Trung Minh Doan; Tomppo, Erkki; McRoberts, Ronald E. (2020)
    Information on land use and land cover (LULC) including forest cover is important for the development of strategies for land planning and management. Satellite remotely sensed data of varying resolutions have been an unmatched source of such information that can be used to produce estimates with a greater degree of confidence than traditional inventory estimates. However, use of these data has always been a challenge in tropical regions owing to the complexity of the biophysical environment, clouds, and haze, and atmospheric moisture content, all of which impede accurate LULC classification. We tested a parametric classifier (logistic regression) and three non-parametric machine learning classifiers (improved k-nearest neighbors, random forests, and support vector machine) for classification of multi-temporal Sentinel 2 satellite imagery into LULC categories in Dak Nong province, Vietnam. A total of 446 images, 235 from the year 2017 and 211 from the year 2018, were pre-processed to gain high quality images for mapping LULC in the 6516 km(2) study area. The Sentinel 2 images were tested and classified separately for four temporal periods: (i) dry season, (ii) rainy season, (iii) the entirety of the year 2017, and (iv) the combination of dry and rainy seasons. Eleven different LULC classes were discriminated of which five were forest classes. For each combination of temporal image set and classifier, a confusion matrix was constructed using independent reference data and pixel classifications, and the area on the ground of each class was estimated. For overall temporal periods and classifiers, overall accuracy ranged from 63.9% to 80.3%, and the Kappa coefficient ranged from 0.611 to 0.813. Area estimates for individual classes ranged from 70 km(2) (1% of the study area) to 2200 km(2) (34% of the study area) with greater uncertainties for smaller classes.
  • Tobon-Cardona, Marcela; Kenttä, Tuomas; Porthan, Kimmo; Tikkanen, Jani T.; Oikarinen, Lasse; Viitasalo, Matti; Salomaa, Veikko; Huikuri, Heikki; Junttila, Juhani M.; Seppänen, Tapio (2018)
    Objective: Our aim was to develop an automated detection method, for prescreening purposes, of early repolarization (ER) pattern with slur/notch configuration in electrocardiogram (ECG) signals using a waveform prototype-based feature vector for supervised classification. Approach: The feature vectors consist of fragments of the ECG signal where the ER pattern is located, instead of abstract descriptive variables of ECG waveforms. The tested classifiers included linear discriminant analysis, k-nearest neighbor algorithm, and support vector machine (SVM). Main results: SVM showed the best performance in Friedman tests in our test data including 5676 subjects representing 45408 leads. Accuracies of the different classifiers showed results well over 90%, indicating that the waveform prototype-based feature vector is an effective representation of the differences between ECG signals with and without the ER pattern. The accuracy of inferior ER was 92.74% and 92.21% for lateral ER. The sensitivity achieved was 91.80% and specificity was 92.73%. Significance: The algorithm presented here showed good performance results, indicating that it could be used as a prescreening tool of ER, and it provides an additional identification of critical cases based on the distances to the classifier decision boundary, which are close to the 0.1 mV threshold and are difficult to label.