Browsing by Subject "CLAY"

Sort by: Order: Results:

Now showing items 1-2 of 2
  • Li, Xiaodong; Meng, Shuo; Puhakka, Eini; Ikonen, Jussi; Liu, Longcheng; Siitari-Kauppi, Marja (2020)
    To determine the diffusion and sorption properties of radionuclides in intact crystalline rocks, a new electromigration device was built and tested by running with I- and Se(IV) ions. By introducing a potentiostat to impose a constant voltage over the studied rock sample, the electromigration device can give more stable and accurate experimental results than those from the traditional electromigration devices. In addition, the variation in the pH of the background electrolytes was minimised by adding a small amount of NaHCO3 as buffers. To interpret the experimental results with more confidence, an advection-dispersion model was also developed in this study, which accounts for the most important mechanisms governing ionic transport in the electromigration experiments. Data analysis of the breakthrough curves by the advection-dispersion model, instead of the traditional ideal plug-flow model, suggest that the effective diffusivities of I- and Se(IV) are (1.15 +/- 0.06) x 10(-13) m(2)/s and (3.50 +/- 0.86) x 10(-14) m(2)/s, respectively. The results also show that I- is more mobile than Se(IV) ions when migrating through the same intact rock sample and that their sorption properties are almost identical.
  • Oleyaei, Seyed Amir; Razavi, Seyed Mohammad Ali; Mikkonen, Kirsi Susanna (2018)
    In this study, the physico-chemical and rheo-mechanical properties of sage seed gum hydrogel, reinforced by various ratios (0-25 wt.%) of Laponite, were investigated. Particles size measurements indicated the formation of large SSG-Laponite microstructures upon nanoparticle adding, due to the interactions generated between the anionic SSG and the charged surfaces of clay platelets. Laponite affected the surface tension and density of the SSG-based systems significantly, but only influenced the-potential above 20 wt.%. The dynamic rheological behavior of SSG-based nanocomposites reflected the reinforcing effect of secondary structures and percolated three-dimensional network, suggested a structural modification of the hydrogels with the Laponite loading. An improvement in texture profile analysis parameters was observed in Laponite content 5 wt.%, whereas for nanoparticles > 5 wt.%, a significant decrease was obtained. In conclusion, Laponite improved the rheological and physico-chemical properties of SSG-based hydrogel and extended its potential as promising future bio-products for industrial applications.