Browsing by Subject "CLIMATE EXTREMES"

Sort by: Order: Results:

Now showing items 1-3 of 3
  • Saunders, Matthew; Dengel, Sigrid; Kolari, Pasi; Moureaux, Christine; Montagnani, Leonardo; Ceschia, Eric; Altimir, Nuria; Lopez-Ballesteros, Ana; Maranon-Jimenez, Sara; Acosta, Manuel; Klumpp, Katja; Gielen, Bert; Op de Beeck, Maarten; Hortnagl, Lukas; Merbold, Lutz; Osborne, Bruce; Grunwald, Thomas; Arrouays, Dominique; Boukir, Hakima; Saby, Nicolas; Nicolini, Giacomo; Papale, Dario; Jones, Michael (2018)
    There are many factors that influence ecosystem scale carbon, nitrogen and greenhouse gas dynamics, including the inherent heterogeneity of soils and vegetation, anthropogenic management interventions, and biotic and abiotic disturbance events. It is important therefore, to document the characteristics of the soils and vegetation and to accurately report all management activities, and disturbance events to aid the interpretation of collected data, and to determine whether the ecosystem either amplifies or mitigates climate change. This paper outlines the importance of assessing both the spatial and temporal variability of soils and vegetation and to report all management events, the import or export of C or N from the ecosystem, and the occurrence of biotic/abiotic disturbances at ecosystem stations of the Integrated Carbon Observation System, a pan-European research infrastructure.
  • Abera, Temesgen Alemayehu; Heiskanen, Janne Hermanni; Pellikka, Petri Kauko Emil; Maeda, Eduardo Eiji (2018)
    Climate–vegetation interaction can be perturbed by human activities through deforestation and natural extreme climatic events. These perturbations can affect the energy and water balance, exacerbating heat stress associated with droughts. Such phenomena are particularly relevant in the Horn of Africa, given its economic and social vulnerability to environmental changes. In this paper, we used 16-year time series (2001–2016) of remotely sensed environmental data with the objective of 1) clarifying how rainfall–vegetation interaction affects land surface temperature (LST) seasonality across the Horn of Africa, and 2) evaluating how this interaction affects LST anomalies during forest loss and drought events. Our results showed that vegetation seasonality follows rainfall modality patterns in 81% of the region. On the other hand, seasonality of daytime LST was negatively related to vegetation greenness patterns across ecoregions, and rainfall modality. LST varied more strongly in grasslands and shrublands than over other vegetation classes. Comparison of LST before and after forest loss in three selected areas (two in Ethiopia and one in Kenya) revealed an annual average increase in LST of 0.7 °C, 1.8 °C, and 0.2 °C after climate variability correction, respectively. The average increase in LST was relatively high and consistent during dry months (1.5 °C, 3 °C, and 0.6 °C). As expected, the rainfall anomalies during droughts (2010/2011, 2015, and 2016) were positively correlated with vegetation greenness anomalies. Nonetheless, the degree with which vegetation cover is affected by extreme rainfall events has a strong influence in regulating the impact of droughts on temperature anomalies. This highlights the importance of vegetation resilience and land cover management in regulating the impact of extreme events.
  • Franz, Daniela; Acosta, Manuel; Altimir, Nuria; Arriga, Nicola; Arrouays, Dominique; Aubinet, Marc; Aurela, Mika; Ayres, Edward; Lopez-Ballesteros, Ana; Barbaste, Mireille; Berveiller, Daniel; Biraud, Sebastien; Boukir, Hakima; Brown, Timothy; Bruemmer, Christian; Buchmann, Nina; Burba, George; Carrara, Arnaud; Cescatti, Allessandro; Ceschia, Eric; Clement, Robert; Cremonese, Edoardo; Crill, Patrick; Darenova, Eva; Dengel, Sigrid; D'Odorico, Petra; Filippa, Gianluca; Fleck, Stefan; Fratini, Gerardo; Fuss, Roland; Gielen, Bert; Gogo, Sebastien; Grace, John; Graf, Alexander; Grelle, Achim; Gross, Patrick; Gruenwald, Thomas; Haapanala, Sami; Hehn, Markus; Heinesch, Bernard; Heiskanen, Jouni; Herbst, Mathias; Herschlein, Christine; Hortnagl, Lukas; Hufkens, Koen; Ibrom, Andreas; Jolivet, Claudy; Joly, Lilian; Jones, Michael; Kiese, Ralf; Klemedtsson, Leif; Kljun, Natascha; Klumpp, Katja; Kolari, Pasi; Kolle, Olaf; Kowalski, Andrew; Kutsch, Werner; Laurila, Tuomas; de Ligne, Anne; Linder, Sune; Lindroth, Anders; Lohila, Annalea; Longdoz, Bernhard; Mammarella, Ivan; Manise, Tanguy; Maranon Jimenez, Sara; Matteucci, Giorgio; Mauder, Matthias; Meier, Philip; Merbold, Lutz; Mereu, Simone; Metzger, Stefan; Migliavacca, Mirco; Molder, Meelis; Montagnani, Leonardo; Moureaux, Christine; Nelson, David; Nemitz, Eiko; Nicolini, Giacomo; Nilsson, Mats B.; Op de Beeck, Maarten; Osborne, Bruce; Lofvenius, Mikaell Ottosson; Pavelka, Marian; Peichl, Matthias; Peltola, Olli; Pihlatie, Mari; Pitacco, Andrea; Pokorny, Radek; Pumpanen, Jukka; Ratie, Celine; Rebmann, Corinna; Roland, Marilyn; Sabbatini, Simone; Saby, Nicolas P. A.; Saunders, Matthew; Schmid, Hans Peter; Schrumpf, Marion; Sedlak, Pavel; Serrano Ortiz, Penelope; Siebicke, Lukas; Sigut, Ladislav; Silvennoinen, Hanna; Simioni, Guillaume; Skiba, Ute; Sonnentag, Oliver; Soudani, Kamel; Soule, Patrice; Steinbrecher, Rainer; Tallec, Tiphaine; Thimonier, Anne; Tuittila, Eeva-Stiina; Tuovinen, Juha-Pekka; Vestin, Patrik; Vincent, Gaelle; Vincke, Caroline; Vitale, Domenico; Waldner, Peter; Weslien, Per; Wingate, Lisa; Wohlfahrt, Georg; Zahniser, Mark; Vesala, Timo (2018)
    Research infrastructures play a key role in launching a new generation of integrated long-term, geographically distributed observation programmes designed to monitor climate change, better understand its impacts on global ecosystems, and evaluate possible mitigation and adaptation strategies. The pan-European Integrated Carbon Observation System combines carbon and greenhouse gas (GHG; CO2, CH4, N2O, H2O) observations within the atmosphere, terrestrial ecosystems and oceans. High-precision measurements are obtained using standardised methodologies, are centrally processed and openly available in a traceable and verifiable fashion in combination with detailed metadata. The Integrated Carbon Observation System ecosystem station network aims to sample climate and land-cover variability across Europe. In addition to GHG flux measurements, a large set of complementary data (including management practices, vegetation and soil characteristics) is collected to support the interpretation, spatial upscaling and modelling of observed ecosystem carbon and GHG dynamics. The applied sampling design was developed and formulated in protocols by the scientific community, representing a trade-off between an ideal dataset and practical feasibility. The use of open-access, high-quality and multi-level data products by different user communities is crucial for the Integrated Carbon Observation System in order to achieve its scientific potential and societal value.