Browsing by Subject "CNS"

Sort by: Order: Results:

Now showing items 1-2 of 2
  • Ma, Li; Piirainen, Sami; Kulesskaya, Natalia; Rauvala, Heikki; Tian, Li (2015)
    Background: Social deficit is one of the core symptoms of neuropsychiatric diseases, in which immune genes play an important role. Although a few immune genes have been shown to regulate social and emotional behaviors, how immune gene network(s) may jointly regulate sociability has not been investigated so far. Methods: To decipher the potential immune-mediated mechanisms underlying social behavior, we first studied the brain microarray data of eight inbred mouse strains with known variations in social behavior and retrieved the differentially expressed immune genes. We then made a protein-protein interaction analysis of them to find the major networks and explored the potential association of these genes with the behavior and brain morphology in the mouse phenome database. To validate the expression and function of the candidate immune genes, we selected the C57BL/6 J and DBA/2 J strains among the eight inbred strains, compared their social behaviors in resident-intruder and 3-chambered social tests and the mRNA levels of these genes, and analyzed the correlations of these genes with the social behaviors. Results: A group of immune genes were differentially expressed in the brains of these mouse strains. The representative C57BL/6 J and DBA/2 J strains displayed significant differences in social behaviors, DBA/2 J mice being less active in social dominance and social interaction than C57BL/6 J mice. The mRNA levels of H2-d1 in the prefrontal cortex, hippocampus, and hypothalamus and C1qb in the hippocampus of the DBA/2 J strain were significantly down-regulated as compared to those in the C57BL/6 J strain. In contrast, Polr3b in the hippocampus and Tnfsf13b in the prefrontal cortex of the DBA/2 J strain were up-regulated. Furthermore, C1qb, Cx3cl1, H2-d1, H2-k1, Polr3b, and Tnfsf13b were predicted to be associated with various behavioral and brain morphological features across the eight inbred strains. Importantly, the C1qb mRNA level was confirmed to be significantly correlated with the sociability in DBA/2 J but not in C57BL/6 J mice. Conclusions: Our study provided evidence on the association of immune gene network(s) with the brain development and behavior in animals and revealed neurobiological functions of novel brain immune genes that may contribute to social deficiency in animal models of neuropsychiatric disorders.
  • Pakarinen, Emmi; Danilova, Tatiana; Voikar, Vootele; Chmielarz, Piotr; Piepponen, Petteri; Airavaara, Mikko; Saarma, Mart; Lindahl, Maria (2020)
    Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an endoplasmic reticulum (ER) localized protein that regulates ER homeostasis and unfolded protein response (UPR). The biology of endogenous MANF in the mammalian brain is unknown and therefore we studied the brain phenotype of MANF-deficient female and male mice at different ages focusing on the midbrain dopamine system and cortical neurons. We show that a lack of MANF from the brain led to the chronic activation of UPR by upregulation of the endoribonuclease activity of the inositol-requiring enzyme 1 alpha (IRE1 alpha) pathway. Furthermore, in the aged MANF-deficient mouse brain in addition the protein kinase-like ER kinase (PERK) and activating transcription factor 6 (ATF6) branches of the UPR pathways were activated. Neuronal loss in neurodegenerative diseases has been associated with chronic ER stress. In our mouse model, increased UPR activation did not lead to neuronal cell loss in the substantia nigra (SN), decrease of striatal dopamine or behavioral changes of MANF-deficient mice. However, cortical neurons lacking MANF were more vulnerable to chemical induction of additional ER stress in vitro. We conclude that embryonic neuronal deletion of MANF does not cause the loss of midbrain dopamine neurons in mice. However, endogenous MANF is needed for maintenance of neuronal ER homeostasis both in vivo and in vitro.