Browsing by Subject "CO2 ion source"

Sort by: Order: Results:

Now showing items 1-1 of 1
  • Vuoriheimo, Tomi (Helsingfors universitet, 2017)
    Accelerator mass spectrometry (AMS) is a technique developed from mass spectrometry and it is able to measure single very rare isotopes from samples with detection capability down to one atom in 10^16. It uses an accelerator system to accelerate the atoms and molecules to break molecular bonds for precise single isotope detection. This thesis describes the optimization of University of Helsinki's AMS system to detect the rare radioactive isotope 14C from CO2 gas samples. Using AMS to detect radiocarbon is a precise and fast way to conduct radiocarbon dating with minimal sample sizes. Solid graphite samples have been in use before but as the ion source has been adopted to use also gaseous CO2 samples, optimizations must be made to maximize the carbon current and ionization efficiency for efficient 14C detection. Parameters optimized include cesium oven temperature, CO2 flow, carrier gas helium flow and their dependencies with each other. Both carbon current and ionization efficiency is looked at in the optimizations. The results are analyzed and discussed for further optimizations or actual measurements with gas. Ionization occurring in the ion source can be understood better with the results. Standard samples of CO2 were measured to determine the background and precision of the AMS system in gas use by comparing the results with literature. The current system was found to have tolerable background of 1.5% of the standard and the Fraction modern value of actual sample was 2.4% higher than values from literature. Ideas to improve background were discussed. A new theory of negative-ion formation in a cesium sputtering ion source by John S. Vogel is reviewed and taken into account in the discussion of optimization. Utilizing the theory, possible future upgrades to improve the ionization efficiency are presented such as cathode material choices to reduce competitive ionization and cesium excitation by laser.