Browsing by Subject "COD-LIVER OIL"

Sort by: Order: Results:

Now showing items 1-3 of 3
  • Knip, Mikael; Luopajarvi, Kristiina; Harkonen, Taina (2017)
    Type 1 diabetes (T1D) is perceived as a chronic immune-mediated disease with a subclinical prodromal period characterized by selective loss of insulin-producing beta cells in the pancreatic islets in genetically susceptible subjects. The incidence of T1D has increased manifold in most developed countries after World War II in parallel with a series of other immune-mediated diseases. T1D results from gene-environmental interactions. The appearance of disease-associated autoantibodies into the peripheral circulation is the first detectable sign of the initiation of the disease process leading to clinical T1D. The first autoantibodies may appear already before the age of 6 months and the seroconversion rate peaks during the second year of life. This implies that exogenous factors involved in the pathogenesis of T1D must be operative in early life, some of them most likely already during pregnancy. Here, we discuss putative endogenous factors that may contribute to the development of T1D during fetal and early postnatal life. Many environmental factors operative in early life have been implicated in the pathogenesis of T1D, but relatively few have been firmly confirmed.
  • Niinisto, Sari; Takkinen, Hanna-Mari; Erlund, Iris; Ahonen, Suvi; Toppari, Jorma; Ilonen, Jorma; Veijola, Riitta; Knip, Mikael; Vaarala, Outi; Virtanen, Suvi M. (2017)
    Aims/hypothesis We investigated the association of early serum fatty acid composition with the risk of type 1 diabetes-associated autoimmunity. Our hypothesis was that fatty acid status during infancy is related to type 1 diabetes-associated autoimmunity and that long-chain n-3 fatty acids, in particular, are associated with decreased risk. Methods We performed a nested case-control analysis within the Finnish Type 1 Diabetes Prediction and Prevention Study birth cohort, carrying HLA-conferred susceptibility to type 1 diabetes (n = 7782). Serum total fatty acid composition was analysed by gas chromatography in 240 infants with islet autoimmunity and 480 control infants at the age of 3 and 6 months. Islet autoimmunity was defined as repeated positivity for islet cell autoantibodies in combination with at least one of three selected autoantibodies. In addition, a subset of 43 infants with primary insulin autoimmunity (i.e. those with insulin autoantibodies as the first autoantibody with no concomitant other autoantibodies) and a control group (n = 86) were analysed. A third endpoint was primary GAD autoimmunity defined as GAD autoantibody appearing as the first antibody without other concomitant autoantibodies (22 infants with GAD autoimmunity; 42 infants in control group). Conditional logistic regression was applied, considering multiple comparisons by false discovery rate <0.05. Results Serum fatty acid composition differed between breastfed and non-breastfed infants, reflecting differences in the fatty acid composition of the milk. Fatty acids were associated with islet autoimmunity (higher serum pentadecanoic, palmitic, palmitoleic and docosahexaenoic acids decreased risk; higher arachidonic: docosahexaenoic and n-6: n-3 acid ratios increased risk). Furthermore, fatty acids were associated with primary insulin autoimmunity, these associations being stronger (higher palmitoleic acid, cis-vaccenic, arachidonic, docosapentaenoic and docosahexaenoic acids decreased risk; higher a-linoleic acid and arachidonic: docosahexaenoic and n-6: n-3 acid ratios increased risk). Moreover, the quantity of breast milk consumed per day was inversely associated with primary insulin autoimmunity, while the quantity of cow's milk consumed per day was directly associated. Conclusions/interpretation Fatty acid status may play a role in the development of type 1 diabetes-associated autoimmunity. Fish-derived fatty acids may be protective, particularly during infancy. Furthermore, fatty acids consumed during breastfeeding may provide protection against type 1 diabetes-associated autoimmunity. Further studies are warranted to clarify the independent role of fatty acids in the development of type 1 diabetes.
  • Miettinen, Maija E.; Smart, Melissa C.; Kinnunen, Leena; Harjutsalo, Valma; Reinert-Hartwall, Linnea; Ylivinkka, Irene; Surcel, Helja-Marja; Lamberg-Allardt, Christel; Hitman, Graham A.; Tuomilehto, Jaakko (2017)
    Objective The in utero environment plays an important role in shaping development and later life health of the fetus. It has been shown that maternal genetic factors in the metabolic pathway of vitamin D associate with type 1 diabetes in the child. In this study we analyzed the genetic determinants of serum 25-hydroxyvitamin D (25OHD) concentration during pregnancy in mothers whose children later developed type 1 diabetes and in control mothers. Study design 474 mothers of type 1 diabetic children and 348 mothers of non-diabetic children were included in the study. We previously selected 7 single nucleotide polymorphisms (SNPs) in four genes in the metabolic pathway of vitamin D vitamin based on our previously published data demonstrating an association between genotype and serum 25OHD concentration. In this re-analysis, possible differences in strength in the association between the SNPs and serum 25OHD concentration in mothers of type 1 diabetic and non-diabetic children were investigated. Serum 25OHD concentrations were previously shown to be similar between the mothers of type 1 diabetic and non-diabetic children and vitamin D deficiency prevalent in both groups. Results Associations between serum 25OHD concentration and 2 SNPs, one in the vitamin D receptor (VDR) gene (rs4516035) and one in the group-specific component (GC) gene (rs12512631), were stronger during pregnancy in mothers whose children later developed type 1 diabetes than in mothers whose children did not (p(interaction) = 0.03, 0.02, respectively). Conclusions We show for the first time that there are differences in the strength of genetic determinants of serum 25OHD concentration during pregnancy between the mothers of type 1 diabetic and non-diabetic children. Our results emphasize that the in utero environment including maternal vitamin D metabolism should be important lines of investigation when searching for factors that lead to early programming of type 1 diabetes.